Institutional Repository of Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences
First molluscan TNFR homologue in Zhikong scallop: Molecular characterization and expression analysis | |
Li, Ling1,2; Qiu, Limei1; Song, Linsheng1; Song, Xiaoyan3; Zhao, Jianmin1; Wang, Lingling1; Mu, Changkao1,2; Zhang, Huan1,2 | |
2009-11-01 | |
发表期刊 | FISH & SHELLFISH IMMUNOLOGY
![]() |
ISSN | 1050-4648 |
卷号 | 27期号:5页码:625-632 |
文章类型 | Article |
摘要 | Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved.; Tumor necrosis factor receptors (TNFRs) are a superfamily of proteins characterized by the unique cysteine-rich domain (CRD) and their important roles in diverse physiological and pathological events such as inflammation, apoptosis, autoimmunity and organogenesis. The first member of the molluscan TNFR family, designated as CfTNFR, was identified from Zhikong scallop Chlamys farreri by expressed sequence tag (EST) and rapid amplification of cDNA ends (RACE) approaches. The full-length cDNA of CfTNFR was of 1334 bp, consisting of a 5' UTR of 17 bp, a 3'UTR of 69 by with a poly (A) tail, and an open reading frame (ORE) of 1248 by encoding a polypeptide of 415 amino acids with a theoretical isoelectric point of 8.33 and predicted molecular weight of 47.07 kDa. There were a signal peptide, a CRD, a transmembrane region and a death domain in the deduced amino acid sequence of CfTNFR, suggesting that it was a typical type 1 membrane protein. The high identities (22-40%) of CfTNFR with other TNFR superfamily members indicated that CfTNFR should be a member of TNFR superfamily, and moreover, it should be the first death domain-containing TNFR found in invertebrates. Phylogenetic analysis revealed that CfTNFR was closely related to TNFR-like proteins from Strongylocentrotus purpuratus, Drosophila melanogaster and Ciona intestinalis, and they formed a separate branch apart from vertebrate TNFRs. The spatial expression of CfTNFR transcripts in healthy and bacteria challenged scallops was examined by quantitative real-time PCR. CfTNFR transcripts could be detected in all tested tissues, including haemocytes, gonad, gill, mantle and hepatopancreas, and significantly up-regulated in the tissues of gonad, gill, mantle and hepatopancreas after Listonella anguillarum challenge, indicating that CfTNFR was constitutive and inducible acute-phase protein involved in immune defence. The present results suggested the existence of the TNFR-like molecules and TNF-TNFR system in low invertebrates, and provided new insights into the role of CfTNFR in scallop innate immune responses to invading microorganisms. (C) 2009 Elsevier Ltd. All rights reserved. |
关键词 | Chlamys Farreri Tnfr Mrna Expression Innate Immunity |
学科领域 | Fisheries ; Immunology ; Marine & Freshwater Biology ; Veterinary Sciences |
DOI | 10.1016/j.fsi.2009.07.009 |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000271931000006 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/2952 |
专题 | 实验海洋生物学重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China 2.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China 3.NW A&F Univ, Yangling 712100, Peoples R China |
推荐引用方式 GB/T 7714 | Li, Ling,Qiu, Limei,Song, Linsheng,et al. First molluscan TNFR homologue in Zhikong scallop: Molecular characterization and expression analysis[J]. FISH & SHELLFISH IMMUNOLOGY,2009,27(5):625-632. |
APA | Li, Ling.,Qiu, Limei.,Song, Linsheng.,Song, Xiaoyan.,Zhao, Jianmin.,...&Zhang, Huan.(2009).First molluscan TNFR homologue in Zhikong scallop: Molecular characterization and expression analysis.FISH & SHELLFISH IMMUNOLOGY,27(5),625-632. |
MLA | Li, Ling,et al."First molluscan TNFR homologue in Zhikong scallop: Molecular characterization and expression analysis".FISH & SHELLFISH IMMUNOLOGY 27.5(2009):625-632. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
li-First molluscan T(786KB) | 限制开放 | -- | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论