IOCAS-IR  > 海洋环流与波动重点实验室
Evaluation of precipitation forecasting methods and an advanced lightweight model
Yang, Nan1,2; Wang, Chong1,2; Li, Xiaofeng1,2
2024-09-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
卷号19期号:9页码:12
通讯作者Li, Xiaofeng([email protected])
摘要Precipitation forecasting is crucial for warning systems and disaster management. This study focuses on deep learning-based methods and categorizes them into three categories: Recurrent Neural Network (RNN-RNN-RNN), Convolutional Neural Network (CNN-CNN-CNN), and CNN-RNN-CNN methods. Then, we conduct a comprehensive evaluation of typical methods in these three categories using the SEVIR precipitation dataset. The results show that RNN-RNN-RNN suffers from instability in long-term forecasts due to error accumulation, CNN-CNN-CNN struggles to capture temporal signals but produces relatively stable forecasts, and CNN-RNN-CNN significantly increases model complexity and inherits the drawbacks of RNN, leading to worse forecasts. Here, we propose an advanced lightweight precipitation forecasting model (ALPF) based on CNN. Experimental results demonstrate that ALPF can effectively forecast spatial-temporal features, maintaining CNN's feature extraction capabilities while avoiding error accumulation in RNN's propagation. ALPF achieves long-term stable precipitation forecasts and can better capture large precipitation amounts.
关键词precipitation forecasting model analysis deep learning adversarial generative network
DOI10.1088/1748-9326/ad661f
收录类别SCI
语种英语
资助项目National Natural Science Foundation of Chinahttp://dx.doi.org/10.13039/501100001809[42306214]; National Natural Science Foundation of China[SDBX2022026]; Shandong Province Postdoctoral Innovative Talents Support Program[2023M733533]; China Postdoctoral Science Foundation; Special Research Assistant Project of the Chinese Academy of Sciences[XDB42000000]; Strategic Priority Research Program of the Chinese Academy of Sciences[2019JZZY010102]; Major Scientific and Technological Innovation Projects in Shandong Province
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001282698700001
出版者IOP Publishing Ltd
WOS关键词EXTREME PRECIPITATION ; RADAR DATA ; ASSIMILATION
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/186196
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Key Lab Ocean Observat & Forecasting, Key Lab Ocean Observat & Forecasting, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
第一作者单位海洋环流与波动重点实验室
通讯作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Yang, Nan,Wang, Chong,Li, Xiaofeng. Evaluation of precipitation forecasting methods and an advanced lightweight model[J]. ENVIRONMENTAL RESEARCH LETTERS,2024,19(9):12.
APA Yang, Nan,Wang, Chong,&Li, Xiaofeng.(2024).Evaluation of precipitation forecasting methods and an advanced lightweight model.ENVIRONMENTAL RESEARCH LETTERS,19(9),12.
MLA Yang, Nan,et al."Evaluation of precipitation forecasting methods and an advanced lightweight model".ENVIRONMENTAL RESEARCH LETTERS 19.9(2024):12.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Nan]的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
百度学术
百度学术中相似的文章
[Yang, Nan]的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
必应学术
必应学术中相似的文章
[Yang, Nan]的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。