IOCAS-IR  > 实验海洋生物学重点实验室
Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area
Zhang, Zhixin1,2,3,4; Zhou, Jinxin5; Molinos, Jorge Garcia6; Mammola, Stefano7,8,9; Bede-Fazekas, Akos10,11; Feng, Xiao12; Kitazawa, Daisuke5; Assis, Jorge13; Qiu, Tianlong14; Lin, Qiang1,3,15
2024-05-13
发表期刊MARINE LIFE SCIENCE & TECHNOLOGY
ISSN2096-6490
页码14
通讯作者Zhang, Zhixin([email protected]) ; Lin, Qiang([email protected])
摘要Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a na & iuml;ve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with na & iuml;ve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The na & iuml;ve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available.
关键词Bayesian approach Climate change Habitat suitability Physiological knowledge Species distribution model
DOI10.1007/s42995-024-00226-0
收录类别SCI
语种英语
资助项目National Key R&D Program of China[2022YFC3102403]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42030204]; Science and Technology Planning Project of Guangdong Province, China[2023B1212060047]; South China Sea Institute of Oceanology of the Chinese Academy of Sciences[SCSIO202208]; JST SICORP, Japan[JPMJSC20E5]; FCT-Foundation for Science and Technology[UIDB/04326/2020]; FCT-Foundation for Science and Technology[UIDP/04326/2020]; FCT-Foundation for Science and Technology[LA/P/0101/2020]; FCT-Foundation for Science and Technology[PTDC/BIA-CBI/6515/2020]; FCT-Foundation for Science and Technology[2022.00861.CEECIND]; National Multidisciplinary Laboratory for Climate Change[RRF-2.3.1-21-2022-00014]; National Multidisciplinary Laboratory for Climate Change[NKFIH-471-3/2021]
WOS研究方向Marine & Freshwater Biology
WOS类目Marine & Freshwater Biology
WOS记录号WOS:001220924200001
出版者SPRINGERNATURE
WOS关键词CLIMATE-CHANGE ; ABSENCE DATA ; OCEAN ; RANGE ; COMMUNITIES ; IMPACTS ; QUALITY
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185764
专题实验海洋生物学重点实验室
通讯作者Zhang, Zhixin; Lin, Qiang
作者单位1.Chinese Acad Sci, South China Sea Inst Oceanol, CAS Key Lab Trop Marine Bioresources & Ecol, Guangzhou 510301, Peoples R China
2.Chinese Acad Sci, South China Sea Inst Oceanol, Guangdong Prov Key Lab Appl Marine Biol, Guangzhou 510301, Peoples R China
3.South China Sea Inst Oceanol, Marine Biodivers & Ecol Evolut Res Ctr, Guangzhou 510301, Peoples R China
4.South China Sea Inst Oceanol, Global Ocean & Climate Res Ctr, Guangzhou 510301, Peoples R China
5.Univ Tokyo, Inst Ind Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778574, Japan
6.Hokkaido Univ, Arctic Res Ctr, Sapporo, Hokkaido 0010021, Japan
7.Univ Helsinki, Finnish Museum Nat Hist, Helsinki, Finland
8.Water Res Inst IRSA, Natl Res Council Italy CNR, Mol Ecol Grp MEG, I-28922 Verbania, Italy
9.Natl Biodivers Future Ctr NBFC, Palermo, Italy
10.HUN REN Ctr Ecol Res, Inst Ecol & Bot, Vacratot, Hungary
11.Eotvos Lorand Univ, Dept Environm & Landscape Geog, Budapest, Hungary
12.Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA
13.Univ Algarve, Ctr Marine Sci, Campus Gambelas, P-8005139 Faro, Portugal
14.Chinese Acad Sci, CAS Key Lab Expt Marine Biol, Inst Oceanol, Qingdao 266071, Peoples R China
15.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Zhang, Zhixin,Zhou, Jinxin,Molinos, Jorge Garcia,et al. Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area[J]. MARINE LIFE SCIENCE & TECHNOLOGY,2024:14.
APA Zhang, Zhixin.,Zhou, Jinxin.,Molinos, Jorge Garcia.,Mammola, Stefano.,Bede-Fazekas, Akos.,...&Lin, Qiang.(2024).Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area.MARINE LIFE SCIENCE & TECHNOLOGY,14.
MLA Zhang, Zhixin,et al."Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area".MARINE LIFE SCIENCE & TECHNOLOGY (2024):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Zhixin]的文章
[Zhou, Jinxin]的文章
[Molinos, Jorge Garcia]的文章
百度学术
百度学术中相似的文章
[Zhang, Zhixin]的文章
[Zhou, Jinxin]的文章
[Molinos, Jorge Garcia]的文章
必应学术
必应学术中相似的文章
[Zhang, Zhixin]的文章
[Zhou, Jinxin]的文章
[Molinos, Jorge Garcia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。