Institutional Repository of Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences
Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area | |
Zhang, Zhixin1,2,3,4; Zhou, Jinxin5; Molinos, Jorge Garcia6; Mammola, Stefano7,8,9; Bede-Fazekas, Akos10,11; Feng, Xiao12; Kitazawa, Daisuke5; Assis, Jorge13; Qiu, Tianlong14; Lin, Qiang1,3,15 | |
2024-05-13 | |
发表期刊 | MARINE LIFE SCIENCE & TECHNOLOGY |
ISSN | 2096-6490 |
页码 | 14 |
通讯作者 | Zhang, Zhixin([email protected]) ; Lin, Qiang([email protected]) |
摘要 | Correlative species distribution models (SDMs) are important tools to estimate species' geographic distribution across space and time, but their reliability heavily relies on the availability and quality of occurrence data. Estimations can be biased when occurrences do not fully represent the environmental requirement of a species. We tested to what extent species' physiological knowledge might influence SDM estimations. Focusing on the Japanese sea cucumber Apostichopus japonicus within the coastal ocean of East Asia, we compiled a comprehensive dataset of occurrence records. We then explored the importance of incorporating physiological knowledge into SDMs by calibrating two types of correlative SDMs: a na & iuml;ve model that solely depends on environmental correlates, and a physiologically informed model that further incorporates physiological information as priors. We further tested the models' sensitivity to calibration area choices by fitting them with different buffered areas around known presences. Compared with na & iuml;ve models, the physiologically informed models successfully captured the negative influence of high temperature on A. japonicus and were less sensitive to the choice of calibration area. The na & iuml;ve models resulted in more optimistic prediction of the changes of potential distributions under climate change (i.e., larger range expansion and less contraction) than the physiologically informed models. Our findings highlight benefits from incorporating physiological information into correlative SDMs, namely mitigating the uncertainties associated with the choice of calibration area. Given these promising features, we encourage future SDM studies to consider species physiological information where available. |
关键词 | Bayesian approach Climate change Habitat suitability Physiological knowledge Species distribution model |
DOI | 10.1007/s42995-024-00226-0 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key R&D Program of China[2022YFC3102403]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42030204]; Science and Technology Planning Project of Guangdong Province, China[2023B1212060047]; South China Sea Institute of Oceanology of the Chinese Academy of Sciences[SCSIO202208]; JST SICORP, Japan[JPMJSC20E5]; FCT-Foundation for Science and Technology[UIDB/04326/2020]; FCT-Foundation for Science and Technology[UIDP/04326/2020]; FCT-Foundation for Science and Technology[LA/P/0101/2020]; FCT-Foundation for Science and Technology[PTDC/BIA-CBI/6515/2020]; FCT-Foundation for Science and Technology[2022.00861.CEECIND]; National Multidisciplinary Laboratory for Climate Change[RRF-2.3.1-21-2022-00014]; National Multidisciplinary Laboratory for Climate Change[NKFIH-471-3/2021] |
WOS研究方向 | Marine & Freshwater Biology |
WOS类目 | Marine & Freshwater Biology |
WOS记录号 | WOS:001220924200001 |
出版者 | SPRINGERNATURE |
WOS关键词 | CLIMATE-CHANGE ; ABSENCE DATA ; OCEAN ; RANGE ; COMMUNITIES ; IMPACTS ; QUALITY |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/185764 |
专题 | 实验海洋生物学重点实验室 |
通讯作者 | Zhang, Zhixin; Lin, Qiang |
作者单位 | 1.Chinese Acad Sci, South China Sea Inst Oceanol, CAS Key Lab Trop Marine Bioresources & Ecol, Guangzhou 510301, Peoples R China 2.Chinese Acad Sci, South China Sea Inst Oceanol, Guangdong Prov Key Lab Appl Marine Biol, Guangzhou 510301, Peoples R China 3.South China Sea Inst Oceanol, Marine Biodivers & Ecol Evolut Res Ctr, Guangzhou 510301, Peoples R China 4.South China Sea Inst Oceanol, Global Ocean & Climate Res Ctr, Guangzhou 510301, Peoples R China 5.Univ Tokyo, Inst Ind Sci, 5-1-5 Kashiwanoha, Kashiwa, Chiba 2778574, Japan 6.Hokkaido Univ, Arctic Res Ctr, Sapporo, Hokkaido 0010021, Japan 7.Univ Helsinki, Finnish Museum Nat Hist, Helsinki, Finland 8.Water Res Inst IRSA, Natl Res Council Italy CNR, Mol Ecol Grp MEG, I-28922 Verbania, Italy 9.Natl Biodivers Future Ctr NBFC, Palermo, Italy 10.HUN REN Ctr Ecol Res, Inst Ecol & Bot, Vacratot, Hungary 11.Eotvos Lorand Univ, Dept Environm & Landscape Geog, Budapest, Hungary 12.Univ N Carolina, Dept Biol, Chapel Hill, NC 27599 USA 13.Univ Algarve, Ctr Marine Sci, Campus Gambelas, P-8005139 Faro, Portugal 14.Chinese Acad Sci, CAS Key Lab Expt Marine Biol, Inst Oceanol, Qingdao 266071, Peoples R China 15.Univ Chinese Acad Sci, Beijing 100049, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Zhang, Zhixin,Zhou, Jinxin,Molinos, Jorge Garcia,et al. Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area[J]. MARINE LIFE SCIENCE & TECHNOLOGY,2024:14. |
APA | Zhang, Zhixin.,Zhou, Jinxin.,Molinos, Jorge Garcia.,Mammola, Stefano.,Bede-Fazekas, Akos.,...&Lin, Qiang.(2024).Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area.MARINE LIFE SCIENCE & TECHNOLOGY,14. |
MLA | Zhang, Zhixin,et al."Incorporating physiological knowledge into correlative species distribution models minimizes bias introduced by the choice of calibration area".MARINE LIFE SCIENCE & TECHNOLOGY (2024):14. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论