Institutional Repository of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS
Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review | |
Ning, Zenglei1,2,3; Zhao, Xia2,3,6; Fan, Liang2,3; Peng, Zhongbo1; Ma, Fubin2,3; Jin, Zuquan4; Deng, Junying5; Duan, Jizhou2,3; Hou, Baorong2,3 | |
2024-04-01 | |
发表期刊 | PROGRESS IN ORGANIC COATINGS |
ISSN | 0300-9440 |
卷号 | 189页码:22 |
通讯作者 | Zhao, Xia([email protected]) |
摘要 | Artificial neural networks (ANNs) have been widely employed in performance testing and life prediction throughout the entire life cycle of coatings due to their self-learning and arbitrary function approximation capabilities. This paper reviews the application research combined with the technologies including optimization algorithms, coating preparation, electrochemistry, machine vision, image processing, non-destructive testing, and simulation so as to optimize formulation design, optimize preparation process parameters, identify micro defects, and predict the service life of coating. In addition, the potential problems encountered in the practical application of neural networks are presented and some corresponding solutions are also proposed. This paper reviews the applied research of ANN in optimizing formulation design, optimizing preparation process parameters, identifying micro-defects and predicting coating service life by combining optimization algorithms, coating preparation processes, electrochemistry, machine vision, image processing, non-destructive testing and simulation. |
关键词 | Artificial neural networks Formulation design Preparation process micro defects Service life |
DOI | 10.1016/j.porgcoat.2024.108279 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Chinese National Natural Science Foundation[52278286]; Chinese National Natural Science Foundation[52225905]; Chinese National Natural Science Foundation[U2106221]; Key R & D Plan Projects in Shandong Province[2023CXPT008]; Wenhai Program of the S & T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Tech- nology (Qingdao)[2021WHZZB2305]; Shandong Key Labora- tory of Corrosion Science |
WOS研究方向 | Chemistry ; Materials Science |
WOS类目 | Chemistry, Applied ; Materials Science, Coatings & Films |
WOS记录号 | WOS:001181439600001 |
出版者 | ELSEVIER SCIENCE SA |
WOS关键词 | PARTICLE SWARM OPTIMIZATION ; THERMAL BARRIER COATINGS ; INFRARED THERMOGRAPHY ; CORROSION BEHAVIOR ; FAILURE BEHAVIOR ; DAMAGE DETECTION ; PREDICTION ; STEEL ; IDENTIFICATION ; TEMPERATURE |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/184802 |
专题 | 海洋环境腐蚀与生物污损重点实验室 |
通讯作者 | Zhao, Xia |
作者单位 | 1.Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing 400074, Peoples R China 2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China 3.Pilot Natl Lab Marine Sci & Technol, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China 4.Qingdao Univ Technol, Cooperat Innovat Ctr Engn Construct & Safety Shand, Qingdao 266032, Peoples R China 5.Wanhua Chem Grp Co Ltd, Yantai 264000, Peoples R China 6.Inst Oceanol, CAS Key Lab Marine Environm Corros & Biofouling, Qingdao, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Ning, Zenglei,Zhao, Xia,Fan, Liang,et al. Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review[J]. PROGRESS IN ORGANIC COATINGS,2024,189:22. |
APA | Ning, Zenglei.,Zhao, Xia.,Fan, Liang.,Peng, Zhongbo.,Ma, Fubin.,...&Hou, Baorong.(2024).Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review.PROGRESS IN ORGANIC COATINGS,189,22. |
MLA | Ning, Zenglei,et al."Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review".PROGRESS IN ORGANIC COATINGS 189(2024):22. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论