Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review
Ning, Zenglei1,2,3; Zhao, Xia2,3,6; Fan, Liang2,3; Peng, Zhongbo1; Ma, Fubin2,3; Jin, Zuquan4; Deng, Junying5; Duan, Jizhou2,3; Hou, Baorong2,3
2024-04-01
发表期刊PROGRESS IN ORGANIC COATINGS
ISSN0300-9440
卷号189页码:22
通讯作者Zhao, Xia([email protected])
摘要Artificial neural networks (ANNs) have been widely employed in performance testing and life prediction throughout the entire life cycle of coatings due to their self-learning and arbitrary function approximation capabilities. This paper reviews the application research combined with the technologies including optimization algorithms, coating preparation, electrochemistry, machine vision, image processing, non-destructive testing, and simulation so as to optimize formulation design, optimize preparation process parameters, identify micro defects, and predict the service life of coating. In addition, the potential problems encountered in the practical application of neural networks are presented and some corresponding solutions are also proposed. This paper reviews the applied research of ANN in optimizing formulation design, optimizing preparation process parameters, identifying micro-defects and predicting coating service life by combining optimization algorithms, coating preparation processes, electrochemistry, machine vision, image processing, non-destructive testing and simulation.
关键词Artificial neural networks Formulation design Preparation process micro defects Service life
DOI10.1016/j.porgcoat.2024.108279
收录类别SCI
语种英语
资助项目Chinese National Natural Science Foundation[52278286]; Chinese National Natural Science Foundation[52225905]; Chinese National Natural Science Foundation[U2106221]; Key R & D Plan Projects in Shandong Province[2023CXPT008]; Wenhai Program of the S & T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Tech- nology (Qingdao)[2021WHZZB2305]; Shandong Key Labora- tory of Corrosion Science
WOS研究方向Chemistry ; Materials Science
WOS类目Chemistry, Applied ; Materials Science, Coatings & Films
WOS记录号WOS:001181439600001
出版者ELSEVIER SCIENCE SA
WOS关键词PARTICLE SWARM OPTIMIZATION ; THERMAL BARRIER COATINGS ; INFRARED THERMOGRAPHY ; CORROSION BEHAVIOR ; FAILURE BEHAVIOR ; DAMAGE DETECTION ; PREDICTION ; STEEL ; IDENTIFICATION ; TEMPERATURE
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/184802
专题海洋环境腐蚀与生物污损重点实验室
通讯作者Zhao, Xia
作者单位1.Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing 400074, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China
3.Pilot Natl Lab Marine Sci & Technol, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China
4.Qingdao Univ Technol, Cooperat Innovat Ctr Engn Construct & Safety Shand, Qingdao 266032, Peoples R China
5.Wanhua Chem Grp Co Ltd, Yantai 264000, Peoples R China
6.Inst Oceanol, CAS Key Lab Marine Environm Corros & Biofouling, Qingdao, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Ning, Zenglei,Zhao, Xia,Fan, Liang,et al. Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review[J]. PROGRESS IN ORGANIC COATINGS,2024,189:22.
APA Ning, Zenglei.,Zhao, Xia.,Fan, Liang.,Peng, Zhongbo.,Ma, Fubin.,...&Hou, Baorong.(2024).Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review.PROGRESS IN ORGANIC COATINGS,189,22.
MLA Ning, Zenglei,et al."Application of artificial neural networks throughout the entire life cycle of coatings: A comprehensive review".PROGRESS IN ORGANIC COATINGS 189(2024):22.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ning, Zenglei]的文章
[Zhao, Xia]的文章
[Fan, Liang]的文章
百度学术
百度学术中相似的文章
[Ning, Zenglei]的文章
[Zhao, Xia]的文章
[Fan, Liang]的文章
必应学术
必应学术中相似的文章
[Ning, Zenglei]的文章
[Zhao, Xia]的文章
[Fan, Liang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。