IOCAS-IR  > 海洋环流与波动重点实验室
Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach
Qi, Jifeng1,2; Zhang, Linlin1,2; Yin, Baoshu1,2,4; Li, Delei1,2; Xie, Bowen3; Sun, Guimin1,2
2023-12-01
发表期刊DYNAMICS OF ATMOSPHERES AND OCEANS
ISSN0377-0265
卷号104页码:16
通讯作者Qi, Jifeng([email protected])
摘要Estimation of the ocean subsurface thermal structure (OSTS) is important for understanding thermodynamic processes and climate variability. In the present study, a novel multi-model ensemble machine learning (Ensemble-ML) model is developed to retrieve subsurface thermal structure in the Pacific Ocean by integrating sea surface data with Argo observations. The Ensemble-ML model integrates four individual machine learning models to enhance estimation accuracy and reliability. Our results exhibit good agreement between the satellite sea surface temperature (SST) and sea surface salinity (SSS) data and Argo observations, providing validation for the utilization of these datasets in the Ensemble-ML model. The Ensemble-ML model exhibits better performance compared to individual machine learning models, with an average root mean square error (RMSE) of 0.3273 degrees C and an average coefficient of determination (R2) of 0.9905. Notably, incorporating geographical information as input variables enhance model performance, emphasizing the importance of considering spatial context in OSTS estimation. The Ensemble-ML model accurately captures the spatial distribution of OSTS across depths and seasons in the Pacific Ocean, effectively reproducing critical temperature features while maintaining strong agreement with Argo observations. Nevertheless, its performance shows relative weakness within the thermocline layer and the equatorial Pacific region (spanning from 10 degrees S to 10 degrees N latitude), which are characterized by complex circulation systems. Despite these challenges, the Ensemble-ML model effectively reproduces the spatial distribution of OSTS of the Pacific Ocean. This indicates the potential of machine learning models, particularly ensemble models, for enhancing OSTS estimation in the Pacific Ocean and other regions, offering valuable insights for future research and applications in physical oceanography.
关键词Ensemble machine learning model Satellite observations Ocean subsurface thermal structure Pacific ocean
DOI10.1016/j.dynatmoce.2023.101403
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2022YFF0801400]; National Key Research and Development Program of China[LSKJ202202403]; National Natural Science Foundation of China[42176010]
WOS研究方向Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences ; Oceanography
WOS类目Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences ; Oceanography
WOS记录号WOS:001150093200001
出版者ELSEVIER
WOS关键词SEA-SURFACE SALINITY ; IN-SITU ; DATA ASSIMILATION ; TEMPERATURE ; CIRCULATION ; IMPACT ; MODEL
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/184297
专题海洋环流与波动重点实验室
海洋生态与环境科学重点实验室
通讯作者Qi, Jifeng
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao, Peoples R China
4.Chinese Acad Sci, CAS Engn Lab Marine Ranching, Inst Oceanol, Qingdao, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Qi, Jifeng,Zhang, Linlin,Yin, Baoshu,et al. Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach[J]. DYNAMICS OF ATMOSPHERES AND OCEANS,2023,104:16.
APA Qi, Jifeng,Zhang, Linlin,Yin, Baoshu,Li, Delei,Xie, Bowen,&Sun, Guimin.(2023).Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach.DYNAMICS OF ATMOSPHERES AND OCEANS,104,16.
MLA Qi, Jifeng,et al."Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach".DYNAMICS OF ATMOSPHERES AND OCEANS 104(2023):16.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S037702652300(13138KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Jifeng]的文章
[Zhang, Linlin]的文章
[Yin, Baoshu]的文章
百度学术
百度学术中相似的文章
[Qi, Jifeng]的文章
[Zhang, Linlin]的文章
[Yin, Baoshu]的文章
必应学术
必应学术中相似的文章
[Qi, Jifeng]的文章
[Zhang, Linlin]的文章
[Yin, Baoshu]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0377026523000544-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。