Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach | |
Qi, Jifeng1,2; Zhang, Linlin1,2; Yin, Baoshu1,2,4; Li, Delei1,2; Xie, Bowen3; Sun, Guimin1,2 | |
2023-12-01 | |
发表期刊 | DYNAMICS OF ATMOSPHERES AND OCEANS |
ISSN | 0377-0265 |
卷号 | 104页码:16 |
通讯作者 | Qi, Jifeng([email protected]) |
摘要 | Estimation of the ocean subsurface thermal structure (OSTS) is important for understanding thermodynamic processes and climate variability. In the present study, a novel multi-model ensemble machine learning (Ensemble-ML) model is developed to retrieve subsurface thermal structure in the Pacific Ocean by integrating sea surface data with Argo observations. The Ensemble-ML model integrates four individual machine learning models to enhance estimation accuracy and reliability. Our results exhibit good agreement between the satellite sea surface temperature (SST) and sea surface salinity (SSS) data and Argo observations, providing validation for the utilization of these datasets in the Ensemble-ML model. The Ensemble-ML model exhibits better performance compared to individual machine learning models, with an average root mean square error (RMSE) of 0.3273 degrees C and an average coefficient of determination (R2) of 0.9905. Notably, incorporating geographical information as input variables enhance model performance, emphasizing the importance of considering spatial context in OSTS estimation. The Ensemble-ML model accurately captures the spatial distribution of OSTS across depths and seasons in the Pacific Ocean, effectively reproducing critical temperature features while maintaining strong agreement with Argo observations. Nevertheless, its performance shows relative weakness within the thermocline layer and the equatorial Pacific region (spanning from 10 degrees S to 10 degrees N latitude), which are characterized by complex circulation systems. Despite these challenges, the Ensemble-ML model effectively reproduces the spatial distribution of OSTS of the Pacific Ocean. This indicates the potential of machine learning models, particularly ensemble models, for enhancing OSTS estimation in the Pacific Ocean and other regions, offering valuable insights for future research and applications in physical oceanography. |
关键词 | Ensemble machine learning model Satellite observations Ocean subsurface thermal structure Pacific ocean |
DOI | 10.1016/j.dynatmoce.2023.101403 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Key Research and Development Program of China[2022YFF0801400]; National Key Research and Development Program of China[LSKJ202202403]; National Natural Science Foundation of China[42176010] |
WOS研究方向 | Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences ; Oceanography |
WOS类目 | Geochemistry & Geophysics ; Meteorology & Atmospheric Sciences ; Oceanography |
WOS记录号 | WOS:001150093200001 |
出版者 | ELSEVIER |
WOS关键词 | SEA-SURFACE SALINITY ; IN-SITU ; DATA ASSIMILATION ; TEMPERATURE ; CIRCULATION ; IMPACT ; MODEL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/184297 |
专题 | 海洋环流与波动重点实验室 海洋生态与环境科学重点实验室 |
通讯作者 | Qi, Jifeng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao, Peoples R China 4.Chinese Acad Sci, CAS Engn Lab Marine Ranching, Inst Oceanol, Qingdao, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Qi, Jifeng,Zhang, Linlin,Yin, Baoshu,et al. Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach[J]. DYNAMICS OF ATMOSPHERES AND OCEANS,2023,104:16. |
APA | Qi, Jifeng,Zhang, Linlin,Yin, Baoshu,Li, Delei,Xie, Bowen,&Sun, Guimin.(2023).Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach.DYNAMICS OF ATMOSPHERES AND OCEANS,104,16. |
MLA | Qi, Jifeng,et al."Advancing ocean subsurface thermal structure estimation in the Pacific Ocean: A multi-model ensemble machine learning approach".DYNAMICS OF ATMOSPHERES AND OCEANS 104(2023):16. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
1-s2.0-S037702652300(13138KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论