Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
DeepBlue: Advanced convolutional neural network applications for ocean remote sensing | |
Wang, Haoyu1; Li, Xiaofeng1,2 | |
2023-12-28 | |
发表期刊 | IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE |
ISSN | 2473-2397 |
页码 | 24 |
通讯作者 | Wang, Haoyu([email protected]) |
摘要 | In the last 40 years, remote sensing technology has evolved, significantly advancing ocean observation and catapulting its data into the big data era. How to efficiently and accurately process and analyze ocean big data and solve practical problems based on ocean big data constitute a great challenge. Artificial intelligence (AI) technology has developed rapidly in recent years. Numerous deep learning (DL) models have emerged, becoming prevalent in big data analysis and practical problem solving. Among these, convolutional neural networks (CNNs) stand as a representative class of DL models and have established themselves as one of the premier solutions in various research areas, including computer vision and remote sensing applications. In this study, we first discuss the model architectures of CNNs and some of their variants as well as how they can be applied to the processing and analysis of ocean remote sensing data. Then, we demonstrate that CNNs can fulfill most of the requirements for ocean remote sensing applications across the following six categories: reconstruction of the 3D ocean field, information extraction, image superresolution, ocean phenomena forecast, transfer learning method, and CNN model interpretability method. Finally, we discuss the technical challenges facing the application of CNN-based ocean remote sensing big data and summarize future research directions. |
DOI | 10.1109/MGRS.2023.3343623 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[42221005]; National Natural Science Foundation of China[42090044]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000] |
WOS研究方向 | Geochemistry & Geophysics ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001134395700001 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
WOS关键词 | GLOBAL OCEAN ; CLASSIFICATION ; TEMPERATURE ; SATELLITE ; FRAMEWORK ; MOTION ; MODEL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/184249 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Wang, Haoyu |
作者单位 | 1.Chinese Acad Sci, Inst Oceanog, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.NOAA, Washington, DC USA |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Wang, Haoyu,Li, Xiaofeng. DeepBlue: Advanced convolutional neural network applications for ocean remote sensing[J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE,2023:24. |
APA | Wang, Haoyu,&Li, Xiaofeng.(2023).DeepBlue: Advanced convolutional neural network applications for ocean remote sensing.IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE,24. |
MLA | Wang, Haoyu,et al."DeepBlue: Advanced convolutional neural network applications for ocean remote sensing".IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE (2023):24. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
DeepBlue_Advanced_co(4818KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Wang, Haoyu]的文章 |
[Li, Xiaofeng]的文章 |
百度学术 |
百度学术中相似的文章 |
[Wang, Haoyu]的文章 |
[Li, Xiaofeng]的文章 |
必应学术 |
必应学术中相似的文章 |
[Wang, Haoyu]的文章 |
[Li, Xiaofeng]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论