IOCAS-IR  > 海洋环流与波动重点实验室
DeepBlue: Advanced convolutional neural network applications for ocean remote sensing
Wang, Haoyu1; Li, Xiaofeng1,2
2023-12-28
发表期刊IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE
ISSN2473-2397
页码24
通讯作者Wang, Haoyu([email protected])
摘要In the last 40 years, remote sensing technology has evolved, significantly advancing ocean observation and catapulting its data into the big data era. How to efficiently and accurately process and analyze ocean big data and solve practical problems based on ocean big data constitute a great challenge. Artificial intelligence (AI) technology has developed rapidly in recent years. Numerous deep learning (DL) models have emerged, becoming prevalent in big data analysis and practical problem solving. Among these, convolutional neural networks (CNNs) stand as a representative class of DL models and have established themselves as one of the premier solutions in various research areas, including computer vision and remote sensing applications. In this study, we first discuss the model architectures of CNNs and some of their variants as well as how they can be applied to the processing and analysis of ocean remote sensing data. Then, we demonstrate that CNNs can fulfill most of the requirements for ocean remote sensing applications across the following six categories: reconstruction of the 3D ocean field, information extraction, image superresolution, ocean phenomena forecast, transfer learning method, and CNN model interpretability method. Finally, we discuss the technical challenges facing the application of CNN-based ocean remote sensing big data and summarize future research directions.
DOI10.1109/MGRS.2023.3343623
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[42221005]; National Natural Science Foundation of China[42090044]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000]
WOS研究方向Geochemistry & Geophysics ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001134395700001
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词GLOBAL OCEAN ; CLASSIFICATION ; TEMPERATURE ; SATELLITE ; FRAMEWORK ; MOTION ; MODEL
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/184249
专题海洋环流与波动重点实验室
通讯作者Wang, Haoyu
作者单位1.Chinese Acad Sci, Inst Oceanog, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.NOAA, Washington, DC USA
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Wang, Haoyu,Li, Xiaofeng. DeepBlue: Advanced convolutional neural network applications for ocean remote sensing[J]. IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE,2023:24.
APA Wang, Haoyu,&Li, Xiaofeng.(2023).DeepBlue: Advanced convolutional neural network applications for ocean remote sensing.IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE,24.
MLA Wang, Haoyu,et al."DeepBlue: Advanced convolutional neural network applications for ocean remote sensing".IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE (2023):24.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
DeepBlue_Advanced_co(4818KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Haoyu]的文章
[Li, Xiaofeng]的文章
百度学术
百度学术中相似的文章
[Wang, Haoyu]的文章
[Li, Xiaofeng]的文章
必应学术
必应学术中相似的文章
[Wang, Haoyu]的文章
[Li, Xiaofeng]的文章
相关权益政策
暂无数据
收藏/分享
文件名: DeepBlue_Advanced_convolutional_neural_network_applications_for_ocean_remote_sensing.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。