IOCAS-IR  > 海洋环流与波动重点实验室
Deep-learning-based information mining from ocean remote-sensing imagery
Li, Xiaofeng1,2; Liu, Bin3; Zheng, Gang4; Ren, Yibin1,2; Zhang, Shuangshang5; Liu, Yingjie1,2; Gao, Le1,2; Liu, Yuhai1,6; Zhang, Bin1,2; Wang, Fan1,2
2020-10-01
发表期刊NATIONAL SCIENCE REVIEW
ISSN2095-5138
卷号7期号:10页码:1584-1605
通讯作者Wang, Fan([email protected])
摘要With the continuous development of space and sensor technologies during the last 40 years, ocean remote sensing has entered into the big-data era with typical five-V (volume, variety, value, velocity and veracity) characteristics. Ocean remote-sensing data archives reach several tens of petabytes and massive satellite data are acquired worldwide daily. To precisely, efficiently and intelligently mine the useful information submerged in such ocean remote-sensing data sets is a big challenge. Deep learning-a powerful technology recently emerging in the machine-learning field-has demonstrated its more significant superiority over traditional physical- or statistical-based algorithms for image-information extraction in many industrial-field applications and starts to draw interest in ocean remote-sensing applications. In this review paper, we first systematically reviewed two deep-learning frameworks that carry out ocean remote-sensing-image classifications and then presented eight typical applications in ocean internal-wave/eddy/oil-spill/coastal-inundation/sea-ice/green-algae/ship/coral-reef mapping from different types of ocean remote-sensing imagery to show how effective these deep-learning frameworks are. Researchers can also readily modify these existing frameworks for information mining of other kinds of remote-sensing imagery.
关键词ocean remote sensing big data artificial intelligence image classification
DOI10.1093/nsr/nwaa047
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19090103]; Key R&D Project of Shandong Province[2019JZZY010102]; Key Deployment Project of Center for Ocean Mega-Science, CAS[COMS2019R02]; CAS Program[Y9KY04101L]; China Postdoctoral Science Foundation[2019M651474]; China Postdoctoral Science Foundation[2019M662452]; Senior User Project of RV KEXUE, by the Center for Ocean Mega-Science, Chinese Academy of Sciences[KEXUE2019GZ04]
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000588701300010
出版者OXFORD UNIV PRESS
引用统计
被引频次:212[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/169118
专题海洋环流与波动重点实验室
通讯作者Wang, Fan
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
3.Shanghai Ocean Univ, Coll Marine Sci, Shanghai 201306, Peoples R China
4.Minist Nat Resources, State Key Lab Satellite Ocean Environm Dynam, Inst Oceanog 2, Hangzhou 310012, Peoples R China
5.Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China
6.Dawning Int Informat Ind Co Ltd, Qingdao 266101, Peoples R China
第一作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
通讯作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Li, Xiaofeng,Liu, Bin,Zheng, Gang,et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. NATIONAL SCIENCE REVIEW,2020,7(10):1584-1605.
APA Li, Xiaofeng.,Liu, Bin.,Zheng, Gang.,Ren, Yibin.,Zhang, Shuangshang.,...&Wang, Fan.(2020).Deep-learning-based information mining from ocean remote-sensing imagery.NATIONAL SCIENCE REVIEW,7(10),1584-1605.
MLA Li, Xiaofeng,et al."Deep-learning-based information mining from ocean remote-sensing imagery".NATIONAL SCIENCE REVIEW 7.10(2020):1584-1605.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
nwaa047.pdf(7492KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xiaofeng]的文章
[Liu, Bin]的文章
[Zheng, Gang]的文章
百度学术
百度学术中相似的文章
[Li, Xiaofeng]的文章
[Liu, Bin]的文章
[Zheng, Gang]的文章
必应学术
必应学术中相似的文章
[Li, Xiaofeng]的文章
[Liu, Bin]的文章
[Zheng, Gang]的文章
相关权益政策
暂无数据
收藏/分享
文件名: nwaa047.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。