Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Deep-learning-based information mining from ocean remote-sensing imagery | |
Li, Xiaofeng1,2; Liu, Bin3; Zheng, Gang4; Ren, Yibin1,2; Zhang, Shuangshang5; Liu, Yingjie1,2; Gao, Le1,2; Liu, Yuhai1,6; Zhang, Bin1,2; Wang, Fan1,2 | |
2020-10-01 | |
发表期刊 | NATIONAL SCIENCE REVIEW |
ISSN | 2095-5138 |
卷号 | 7期号:10页码:1584-1605 |
通讯作者 | Wang, Fan([email protected]) |
摘要 | With the continuous development of space and sensor technologies during the last 40 years, ocean remote sensing has entered into the big-data era with typical five-V (volume, variety, value, velocity and veracity) characteristics. Ocean remote-sensing data archives reach several tens of petabytes and massive satellite data are acquired worldwide daily. To precisely, efficiently and intelligently mine the useful information submerged in such ocean remote-sensing data sets is a big challenge. Deep learning-a powerful technology recently emerging in the machine-learning field-has demonstrated its more significant superiority over traditional physical- or statistical-based algorithms for image-information extraction in many industrial-field applications and starts to draw interest in ocean remote-sensing applications. In this review paper, we first systematically reviewed two deep-learning frameworks that carry out ocean remote-sensing-image classifications and then presented eight typical applications in ocean internal-wave/eddy/oil-spill/coastal-inundation/sea-ice/green-algae/ship/coral-reef mapping from different types of ocean remote-sensing imagery to show how effective these deep-learning frameworks are. Researchers can also readily modify these existing frameworks for information mining of other kinds of remote-sensing imagery. |
关键词 | ocean remote sensing big data artificial intelligence image classification |
DOI | 10.1093/nsr/nwaa047 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19090103]; Key R&D Project of Shandong Province[2019JZZY010102]; Key Deployment Project of Center for Ocean Mega-Science, CAS[COMS2019R02]; CAS Program[Y9KY04101L]; China Postdoctoral Science Foundation[2019M651474]; China Postdoctoral Science Foundation[2019M662452]; Senior User Project of RV KEXUE, by the Center for Ocean Mega-Science, Chinese Academy of Sciences[KEXUE2019GZ04] |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000588701300010 |
出版者 | OXFORD UNIV PRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/169118 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Wang, Fan |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China 3.Shanghai Ocean Univ, Coll Marine Sci, Shanghai 201306, Peoples R China 4.Minist Nat Resources, State Key Lab Satellite Ocean Environm Dynam, Inst Oceanog 2, Hangzhou 310012, Peoples R China 5.Hohai Univ, Coll Oceanog, Nanjing 210098, Peoples R China 6.Dawning Int Informat Ind Co Ltd, Qingdao 266101, Peoples R China |
第一作者单位 | 海洋环流与波动重点实验室; 中国科学院海洋大科学研究中心 |
通讯作者单位 | 海洋环流与波动重点实验室; 中国科学院海洋大科学研究中心 |
推荐引用方式 GB/T 7714 | Li, Xiaofeng,Liu, Bin,Zheng, Gang,et al. Deep-learning-based information mining from ocean remote-sensing imagery[J]. NATIONAL SCIENCE REVIEW,2020,7(10):1584-1605. |
APA | Li, Xiaofeng.,Liu, Bin.,Zheng, Gang.,Ren, Yibin.,Zhang, Shuangshang.,...&Wang, Fan.(2020).Deep-learning-based information mining from ocean remote-sensing imagery.NATIONAL SCIENCE REVIEW,7(10),1584-1605. |
MLA | Li, Xiaofeng,et al."Deep-learning-based information mining from ocean remote-sensing imagery".NATIONAL SCIENCE REVIEW 7.10(2020):1584-1605. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
nwaa047.pdf(7492KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论