Institutional Repository of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS
碳纤维刷作为海水电池阴极材料的性能及其改性研究 | |
田国东 | |
学位类型 | 硕士 |
导师 | 孙虎元 |
2019-05-07 | |
学位授予单位 | 中国科学院大学 |
学位授予地点 | 中国科学院海洋研究所 |
学位名称 | 工程硕士 |
学位专业 | 环境工程 |
关键词 | 海水电池 阴极 碳纤维 氧化石墨烯 |
摘要 | 进入21世纪以来,海洋在全球各国的重要性也愈发突出,无论是从国民经济还是国防安全的角度,发展海洋经济与海洋科技的必要性也愈发清晰。由于海洋不同于陆地,海洋在开发利用方面需要用到特殊的海洋仪器。为海洋仪器提供能量的一般方法拥有不可避免的缺点,即需要物理介质进行电能传输;电池可以解决这个问题,但传统电池应用到海洋环境中时,在安全性等方面也有着巨大的隐患。更加安全、高效的新型电池具有比较光明的应用前景,可以设计为开放式结构的金属–溶解氧海水电池无疑在很多方面满足我们的要求。 本文以碳纤维刷为载体,以氧化石墨烯为催化剂,采用电泳沉积的方法制备出氧化石墨烯–碳纤维复合电极。对复合电极进行了开路电位(OCP)、循环伏安曲线(CV)、恒电流放电、动电位极化曲线/电流–时间曲线、扫描电镜(SEM)等方面的性能测试;与AZ63镁合金组成镁–溶解氧海水电池并对全电池进行了空载海水电池稳定电压、海水电池恒阻放电性能、动态海水中海水电池恒流放电性能等方面的测试,以及动静态海水中电池性能对比研究。本论文主要结论如下: 1、电泳沉积是一种对碳纤维表面性能进行改进的优秀方法,可以将氧化石墨烯附着到碳纤维的表面,改性后的碳纤维性能较之未改性的纯碳纤维均有所提高。沉积电压在20 V时,从表面观察到的沉积效果最好。 2、复合电极非常好地结合了碳纤维良好的导电能力和氧化石墨烯的催化能力,不仅没有破坏碳纤维的导电能力,反而为其添加了原本不具备的催化能力。本文中使用的此规格的碳纤维刷最佳的通过电流为3 mA。AZ63镁合金是一种典型的阳极材料,与复合电极组成海水电池后电压更大、稳定性更好、激活时间短、几乎不存在滞后现象。 3、较之静态海水,动态的海水会对电池的性能产生一定的影响,且不同的海水流向对电极表面反应的影响方式也不同。电极正对和背对水流方向时,这两种状态下电极表面的电化学反应是同时受到电子转移和扩散过程的控制,且整体的反应过程不受阴极反应的影响;侧对水流时电极反应过程主要受到电子转移过程的控制,扩散过程影响较小,阴极反应成为整体反应的控制步骤。 4、设计了一款海水电池,最高电池电压1.74 V左右,稳定电压在1.50 V左右。为保持电池电压在0.8 V以上,接入的电阻应在10 Ω以上,最大功率是在负载为15 Ω时,最大功率为66.67 mW。 |
其他摘要 | The importance of the ocean in all countries of the world has become more and more prominent since the beginning of the 21st century. It becomes more and more clear of necessity to develop marine economy and marine science and technology, both in terms of national economy and national defense security. Special marine instruments are used in the development and utilization of the ocean, since the ocean is different from the land. The physical medium is required for power transmission in the general method of providing energy for marine instruments, the battery can solve this problem, but there is a great hidden danger in terms of safety and the like when the conventional battery is applied to the marine environment. The new safer and more efficient battery has a brighter application prospect, and the metal–dissolved oxygen seawater battery that can be designed as an open structure undoubtedly meets our requirements in many aspects. In this paper, a graphene oxide–carbon fiber composite electrode was prepared by electrophoretic deposition using a carbon fiber brush as the carrier and graphene oxide as the catalyst. Some performances were tested on the composite electrode, including the open circuit potential (OCP), cyclic voltammetry (CV), constant current discharge, potentiodynamic polarization curve, current–time curve and scanning electron microscope (SEM). The composite electrode and AZ63 magnesium alloy were constituted a magnesium–dissolved oxygen seawater battery and the full battery was subjected to the unloaded seawater battery stability voltage test, the seawater battery constant resistance discharge performance, the seawater battery constant current discharge performance test in dynamic seawater and the battery performance comparison study in dynamic and static seawater. The main conclusions of this paper are as follows: 1、Electrophoretic deposition is an excellent method for modifying the surface of carbon fibers, which can attach graphene oxide to the surface of carbon fibers. The properties of the modified carbon fiber are improved compared to the unmodified pure carbon fiber. When the deposition voltage is 20 V, the deposition effect observed from the surface is the best. 2、The composite electrode combines the good electrical conductivity of carbon fiber and the catalytic ability of graphene oxide. It not only does not destroy the electrical conductivity of carbon fiber, but also adds catalytic ability that it did not have. The carbon fiber brush of this specification used in this article has an optimum current of 3 mA. AZ63 magnesium alloy is a typical anode material. The battery voltage is larger, the stability is better, the activation time is short, and there is almost no hysteresis after forming a seawater battery with a composite electrode. 3、Dynamic seawater will have a certain impact on the performance of the battery compared with static seawater, and the effect of different seawater flows on the surface reaction of the electrode is also different. The electrochemical reaction of the electrode surface is controlled by electronic transfer and diffusion simultaneously when the electrode is facing or facing away from the water flow direction, and the overall reaction process is not affected by the cathodic reaction. The electrode reaction process is mainly controlled by the electronic transfer process when the electrode side faces the water flow direction, and the diffusion process has little effect, and the cathodic reaction becomes the limiting factor of the overall reaction. 4、A seawater battery was designed with a maximum battery voltage of about 1.74 V and a stable voltage of around 1.50 V. In order to keep the battery voltage above 0.8 V, the resistance should be above 10 Ω, and the maximum power is when the load is 15 Ω, the maximum power is 66.67 mW. |
学科领域 | 海洋化学 |
学科门类 | 工学 ; 工学::环境科学与工程(可授工学、理学、农学学位) |
页数 | 82 |
语种 | 中文 |
目录 | 目 录
|
文献类型 | 学位论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/156862 |
专题 | 海洋环境腐蚀与生物污损重点实验室 |
推荐引用方式 GB/T 7714 | 田国东. 碳纤维刷作为海水电池阴极材料的性能及其改性研究[D]. 中国科学院海洋研究所. 中国科学院大学,2019. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
碳纤维刷作为海水电池阴极材料的性能及其改(6863KB) | 学位论文 | 限制开放 | CC BY-NC-SA | 浏览 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[田国东]的文章 |
百度学术 |
百度学术中相似的文章 |
[田国东]的文章 |
必应学术 |
必应学术中相似的文章 |
[田国东]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论