IOCAS-IR

浏览/检索结果: 共4条,第1-4条 帮助

已选(0)清除 条数/页:   排序方式:
Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model 期刊论文
GEOPHYSICAL RESEARCH LETTERS, 2023, 卷号: 50, 期号: 17, 页码: 10
作者:  Wang, Yunhe;  Yuan, Xiaojun;  Ren, Yibin;  Bushuk, Mitchell;  Shu, Qi;  Li, Cuihua;  Li, Xiaofeng
收藏  |  浏览/下载:100/0  |  提交时间:2023/12/13
Antarctic  sea ice prediction  
Understanding Arctic Sea Ice Thickness Predictability by a Markov Model 期刊论文
JOURNAL OF CLIMATE, 2023, 卷号: 36, 期号: 15, 页码: 4879-4897
作者:  Wang, Yunhe;  Yuan, Xiaojun;  Bi, Haibo;  Ren, Yibin;  Liang, Yu;  Li, Cuihua;  Li, Xiaofeng
收藏  |  浏览/下载:187/0  |  提交时间:2023/12/13
Arctic  Sea ice  Climate prediction  Ice thickness  
Predicting the Daily Sea Ice Concentration on a Subseasonal Scale of the Pan-Arctic During the Melting Season by a Deep Learning Model 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 卷号: 61, 页码: 15
作者:  Ren, Yibin;  Li, Xiaofeng
收藏  |  浏览/下载:54/0  |  提交时间:2023/12/13
Predictive models  Atmospheric modeling  Sea ice  Numerical models  Arctic  Ocean temperature  Data models  Deep learning  Pan-Arctic  physically constrained loss function  sea ice concentration (SIC) prediction  subseasonal scale  
A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season 期刊论文
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 卷号: 60, 页码: 19
作者:  Ren, Yibin;  Li, Xiaofeng;  Zhang, Wenhao
Adobe PDF(22032Kb)  |  收藏  |  浏览/下载:236/0  |  提交时间:2022/07/18
Deep fully convolutional networks (FCNs)  recursively predicting  satellite-derived sea ice concentration (SIC)  SIC prediction  temporal-spatial attention