IOCAS-IR

浏览/检索结果: 共3条,第1-3条 帮助

已选(0)清除 条数/页:   排序方式:
A Novel Marine Oil Spillage Identification Scheme Based on Convolution Neural Network Feature Extraction From Fully Polarimetric SAR Imagery 期刊论文
IEEE ACCESS, 2020, 卷号: 8, 页码: 59801-59820
作者:  Song, Dongmei;  Zhen, Zongjin;  Wang, Bin;  Li, Xiaofeng;  Gao, Le;  Wang, Ning;  Xie, Tao;  Zhang, Ting
Adobe PDF(5827Kb)  |  收藏  |  浏览/下载:273/0  |  提交时间:2020/09/23
Marine oil spill  RADARSAT-2  PolSAR  deep learning  feature extraction  convolutional neural network (CNN)  
Performance of a simple backtracking method for marine oil source searching in a 3D ocean 期刊论文
MARINE POLLUTION BULLETIN, 2019, 卷号: 142, 页码: 321-334
作者:  Chen, Haibo
Adobe PDF(7973Kb)  |  收藏  |  浏览/下载:290/0  |  提交时间:2019/08/29
Backtracking  Marine oil spill  Source searching  Lagrangian particle model  
Field Experiments of Multi-Channel Oceanographic Fluorescence Lidar for Oil Spill and Chlorophyll-a Detection 期刊论文
JOURNAL OF OCEAN UNIVERSITY OF CHINA, 2014, 卷号: 13, 期号: 4, 页码: 597-603
作者:  Li Xiaolong;  Zhao Chaofang;  Ma Youjun;  Liu Zhishen;  Zhao, CF (reprint author), Ocean Univ China, Ocean Remote Sensing Inst, Qingdao 266003, Peoples R China.
Adobe PDF(598Kb)  |  收藏  |  浏览/下载:279/0  |  提交时间:2015/06/11
Oceanographic Lidar  Oil Spill  Marine Environment  Fluorescence Spectrum  Raman Scattering