Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System | |
Huang, Wen1,2,3,4; Xu, Fei1,3,4; Qu, Tao1,3,4; Zhang, Rui1,2,3,4; Li, Li1,3,4; Que, Huayong1,3,4; Zhang, Guofan1,3,4 | |
2015-12-28 | |
发表期刊 | PLOS ONE |
卷号 | 10期号:12页码:0144991 |
文章类型 | Article |
摘要 | Thyroid hormones (THs) play important roles in development, metamorphosis, and metabolism in vertebrates. During the past century, TH functions were regarded as a synapomorphy of vertebrates. More recently, accumulating evidence has gradually convinced us that TH functions also occur in invertebrate chordates. To date, however, TH-related studies in non-chordate invertebrates have been limited. In this study, THs were qualitatively detected by two reliable methods (HPLC and LC/MS) in a well-studied molluscan species, the Pacific oyster Crassostrea gigas. Quantitative measurement of THs during the development of C. gigas showed high TH contents during embryogenesis and that oyster embryos may synthesize THs endogenously. As a first step in elucidating the TH signaling cascade, an ortholog of vertebrate TH receptor (TR), the most critical gene mediating TH effects, was cloned in C. gigas. The sequence of CgTR has conserved DNA-binding and ligand-binding domains that normally characterize these receptors. Experimental results demonstrated that CgTR can repress gene expression through binding to promoters of target genes and can interact with oyster retinoid X receptor. Moreover, CgTR mRNA expression was activated by T4 and the transcriptional activity of CgTR promoter was repressed by unliganded CgTR protein. An atypical thyroid hormone response element (CgDR5) was found in the promoter of CgTR, which was verified by electrophoretic mobility shift assay (EMSA). These results indicated that some of the CgTR function is conserved. However, the EMSA assay showed that DNA binding specificity of CgTR was different from that of the vertebrate TR and experiments with two dual-luciferase reporter systems indicated that L-thyroxine, 3,30,5-triiodothyronine, and triiodothyroacetic acid failed to activate the transcriptional activity of CgTR. This is the first study to functionally characterize TR in mollusks. The presence of THs and the functions of CgTR in mollusks contribute to better understanding of the evolution of the TH system. |
DOI | 10.1371/journal.pone.0144991 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000367451400017 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/86647 |
专题 | 海洋生物技术研发中心 实验海洋生物学重点实验室 |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Expt Marine Biol, Qingdao, Peoples R China 2.Univ Chinese Acad Sci, Beijing, Peoples R China 3.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao, Peoples R China 4.Chinese Acad Sci, Inst Oceanol, Natl & Local Joint Engn Lab Ecol Mariculture, Qingdao, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Huang, Wen,Xu, Fei,Qu, Tao,et al. Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System[J]. PLOS ONE,2015,10(12):0144991. |
APA | Huang, Wen.,Xu, Fei.,Qu, Tao.,Zhang, Rui.,Li, Li.,...&Zhang, Guofan.(2015).Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System.PLOS ONE,10(12),0144991. |
MLA | Huang, Wen,et al."Identification of Thyroid Hormones and Functional Characterization of Thyroid Hormone Receptor in the Pacific Oyster Crassostrea gigas Provide Insight into Evolution of the Thyroid Hormone System".PLOS ONE 10.12(2015):0144991. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Identification of Th(1516KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论