IOCAS-IR  > 实验海洋生物学重点实验室
Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC
Jiao, Xu-dong1,2; Hu, Yong-hua1; Sun, Li1
2010-08-02
发表期刊VACCINE
ISSN0264-410X
卷号28期号:34页码:5635-5640
文章类型Article
摘要Bacterial flagellin is known to induce potent immune response in vertebrate systems via the toll-like receptor (TLR) 5. As a result, flagellin has been studied extensively as a vaccine adjuvant. In a previous study, we examined the vaccine and adjuvant potentials of the flagellin (FliC) of the fish pathogen Edwardsiella tarda. We found that E. tarda FliC induced low protective immunity by itself but could function as a molecular adjuvant and potentiate the specific immune response induced by the E. tarda antigen Eta6. Since FliC is a large protein and organized into distinct structural domains, we wondered whether the immunostimulating effect observed with the full-length protein could be localized to a certain region. To investigate this question, we in the present study dissected the FliC protein into several segments according to its structural features: (i) N163, which consists of the conserved N-terminal 163 residues of FliC; (ii) M160, which consists of the variable middle 160 residues; (iii) C94, which consists of the conserved C-terminal 94 residues; (iv) NC257, which is an artificial fusion of N163 and C94. To examine the adjuvanticity of the FliC fragments, DNA vaccine plasmids expressing FliC fragments in fusion with Eta6 were constructed and used to immunize Japanese flounder. The results showed that N163 produced the best adjuvant effect, which, in respect to improvement in the relative percent survival of the vaccinated fish, was comparable to that of the full-length FliC. None of the other FliC fragments exhibited apparent immunopotentiating effect. Further analysis showed that N163 enhanced the production of serum specific antibodies and, like full-length FliC, significantly upregulated the expression of the genes that are possibly involved in innate and adaptive immunity. These results indicate that N163 is the immunodominant region of FliC and suggest that E. tarda FliC may induce immune responses in Japanese flounder via mechanisms alternative to that involving TLR5. (C) 2010 Elsevier Ltd. All rights reserved.; Bacterial flagellin is known to induce potent immune response in vertebrate systems via the toll-like receptor (TLR) 5. As a result, flagellin has been studied extensively as a vaccine adjuvant. In a previous study, we examined the vaccine and adjuvant potentials of the flagellin (FliC) of the fish pathogen Edwardsiella tarda. We found that E. tarda FliC induced low protective immunity by itself but could function as a molecular adjuvant and potentiate the specific immune response induced by the E. tarda antigen Eta6. Since FliC is a large protein and organized into distinct structural domains, we wondered whether the immunostimulating effect observed with the full-length protein could be localized to a certain region. To investigate this question, we in the present study dissected the FliC protein into several segments according to its structural features: (i) N163, which consists of the conserved N-terminal 163 residues of FliC; (ii) M160, which consists of the variable middle 160 residues; (iii) C94, which consists of the conserved C-terminal 94 residues; (iv) NC257, which is an artificial fusion of N163 and C94. To examine the adjuvanticity of the FliC fragments, DNA vaccine plasmids expressing FliC fragments in fusion with Eta6 were constructed and used to immunize Japanese flounder. The results showed that N163 produced the best adjuvant effect, which, in respect to improvement in the relative percent survival of the vaccinated fish, was comparable to that of the full-length FliC. None of the other FliC fragments exhibited apparent immunopotentiating effect. Further analysis showed that N163 enhanced the production of serum specific antibodies and, like full-length FliC, significantly upregulated the expression of the genes that are possibly involved in innate and adaptive immunity. These results indicate that N163 is the immunodominant region of FliC and suggest that E. tarda FliC may induce immune responses in Japanese flounder via mechanisms alternative to that involving TLR5. (C) 2010 Elsevier Ltd. All rights reserved.
关键词Edwardsiella Tarda Flagellin Adjuvant Dna Vaccine
学科领域Immunology ; Medicine, Research & Experimental
DOI10.1016/j.vaccine.2010.06.022
URL查看原文
收录类别SCI
语种英语
WOS记录号WOS:000280952300017
引用统计
被引频次:20[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/5816
专题实验海洋生物学重点实验室
作者单位1.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Grad Univ, Beijing 100049, Peoples R China
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Jiao, Xu-dong,Hu, Yong-hua,Sun, Li. Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC[J]. VACCINE,2010,28(34):5635-5640.
APA Jiao, Xu-dong,Hu, Yong-hua,&Sun, Li.(2010).Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC.VACCINE,28(34),5635-5640.
MLA Jiao, Xu-dong,et al."Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC".VACCINE 28.34(2010):5635-5640.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Dissection and local(278KB) 限制开放--浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Jiao, Xu-dong]的文章
[Hu, Yong-hua]的文章
[Sun, Li]的文章
百度学术
百度学术中相似的文章
[Jiao, Xu-dong]的文章
[Hu, Yong-hua]的文章
[Sun, Li]的文章
必应学术
必应学术中相似的文章
[Jiao, Xu-dong]的文章
[Hu, Yong-hua]的文章
[Sun, Li]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Dissection and localization of the immunostimulating domain of Edwardsiella tarda FliC.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。