IOCAS-IR  > 实验海洋生物学重点实验室
海水鱼类病原菌迟缓爱德华氏菌和海豚链球菌的致病机制
李墨非
学位类型博士
导师孙黎
2015-05-24
学位授予单位中国科学院大学
学位授予地点北京
学位专业海洋生物学
关键词迟缓爱德华氏菌 溶菌酶抑制因子 补体 海豚链球菌 细菌素
摘要        迟缓爱德华氏菌(Edwardsiella tarda)和海豚链球菌(Streptococcus iniae)是海水养殖鱼类的重要病原菌。在本论文中,我们研究了迟缓爱德华氏菌和海豚链球菌的致病机制。首先,在迟缓爱德华氏菌研究中,我们分析了溶菌酶抑制因子MliCEt的功能作用以及MliCEt与另一个溶菌酶抑制因子IvyEt的关系。我们发现重组表达的MliCEt (rMliC)抑制溶菌酶裂解革兰氏阳性菌,并且抑制溶菌酶和血清对于迟缓爱德华氏菌的杀菌作用;同时,rMliC还能够增强迟缓爱德华氏菌感染大菱鲆的能力。C33S突变不影响MliC的活性,但W79A突变显著增强MliC的活性。与野生株相比,mliCivy的单敲除菌株TXΔmliC或TXΔivy的组织侵染、致死率、抗血清杀菌和胞内复制能力明显降低。TXΔmliC在导入mliCEt 基因后恢复了毒力。与单敲除菌株TXΔmliC或TXΔivy相比,mliCivy的双敲除菌株TXΔmliCivy的毒力显著降低。这些结果证明MliC中保守的C33半胱氨酸位点是非必需的, 并且MliCEt与IvyEt以协同的方式发挥作用。除了MliC以外,我们还研究了迟缓爱德华氏菌的抗血清机制。我们发现迟缓爱德华氏菌在鱼类血清中具有高存活率(87.6%),与迟缓爱德华氏菌孵育后的血清具有很强的溶血活性和杀菌活性但很低的趋化活性;相比与正常迟缓爱德华氏菌孵育后的血清,与灭活迟缓爱德华氏菌孵育后的血清没有明显的溶血活性。这些结果表明迟缓爱德华氏菌通过抑制补体旁路途径的激活来抵抗血清的杀伤作用,并且迟缓爱德华氏菌表面的热不稳定结构在其逃逸补体的过程中发挥重要的作用。
       在海豚链球菌的研究中,我们分析了细菌素Sil的生物学功能。我们发现重组表达的Sil(rSil)抑制枯草芽孢杆菌的生长,但是对于其他26种菌的生长没有影响。rSil能够与细菌结合但不杀死细菌。rSil与大菱鲆头肾单核细胞相互作用,从而抑制细胞的先天免疫反应并增强海豚链球菌的感染能力。抗体阻断Sil显著降低了海豚链球菌的感染能力。体内感染表明rSil能够增强海豚链球菌在大菱鲆组织中的侵染能力。这些结果表明Sil是一种新颖的毒力相关细菌素,其能够通过阻遏宿主的免疫反应而促进细菌感染。
其他摘要
    Edwardsiella tarda and Streptococcus iniae are severe pathogens to a wide range of economically important fish species. In our study, we research the pathogenic mechanism of E. tarda and S. iniae. In the study of E. tarda, we analyzed the functions of lysozyme inhibitor (MliCEt) and characterized MliCEt in comparison with the other lysozyme inhibitor (IvyEt). We found that recombinant MliCEt (rMliC) inhibited lysozyme-induced lysis of a Gram-positive bacterium, and reduced serum-facilitated lysozyme killing of E. tarda. When rMliC introduced into turbot, rMliC promoted bacterial dissemination in fish tissues. The C33S mutation had no influence on the activity of rMliC, while the W79A mutation slightly but significantly enhanced the activity of rMliC. Compared to the wild-type strain, singleknockout strains of either TXΔmliC or TXΔivy were severely attenuated for the ability of tissue invasion, host lethality, serum survival, and intracellular replication. TXΔmliC was restored by complementation with an introduced mliCEt gene. Compared to the TXΔmliC or TXΔivy singleknockout strains, the TXΔmliCivy double-knockout strain was significantly impaired in most of the virulence features. These results indicate that the conserved cysteine is functionally dispensable to MliC, MliCEt most likely works in a concerted and parallel manner with IvyEt. Except MliC, we researched the anti-serum mechanism of E. tarda. We found that, when incubated with flounder serum, E. tarda exhibited a high survival rate (87.6%). And E. tarda-incubated serum possessed strong hemolytic activity and bactericidal activity. Compared to the serum incubated with a complement-sensitive laboratory Escherichia coli strain, E. tarda-incubated serum exhibited much less chemotactic activity; in contrast to the serum incubated with live E. tarda, the serum incubated with heat-inactivated E. tarda exhibited no apparent hemolytic capacity. Taken together, these results indicate that E. tarda circumvents serum attack by preventing, to a large extent, complement activation via the alternative pathway, and that heatlabile surface structures likely play an essential role in the complement evasion of E. tarda.
    In the study of S. iniae, we identified a putative bacteriocin, Sil, and examined its biological activity. We found that purified recombinant Sil (rSil) exhibited a dose-dependent inhibitory effect on the growth of Bacillus subtilis but had no impact on the growths of other 23 different strains. rSil bound to the surface of B. subtilis but induced no killing of the target cells. Cellular study revealed that rSil interacted with turbot (Scophthalmus maximus) head kidney monocytes and inhibited the innate immune response of the cells, which led to enhanced cellular infection of S. iniae. Antibody blocking of the extracellular Sil produced by S. iniae significantly attenuated the infectivity of S. iniae. Study showed that administration of turbot with rSil prior to S. iniae infection significantly increased bacterial dissemination and colonization in fish tissues. These results indicate that rSil is a novel virulenceassociated bacteriostatic and an immunoregulator that promotes S. iniae infection by impairing the immune defense of host.
学科领域海洋生物学
语种中文
文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/22724
专题实验海洋生物学重点实验室
作者单位中国科学院海洋研究所
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
李墨非. 海水鱼类病原菌迟缓爱德华氏菌和海豚链球菌的致病机制[D]. 北京. 中国科学院大学,2015.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
李墨非-博士毕业论文终稿-提交版本.pd(7224KB)学位论文 限制开放ODC PDDL浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[李墨非]的文章
百度学术
百度学术中相似的文章
[李墨非]的文章
必应学术
必应学术中相似的文章
[李墨非]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 李墨非-博士毕业论文终稿-提交版本.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。