IOCAS-IR
Bathymetry Retrieval Without In-Situ Depth Using an ICESat-2 Assisted Dual-Band Model
Zhu, Jinshan1; Han, Yina1; Wang, Ruifu1; Yin, Fei2; Liu, Bopeng1; Cui, Yongjie3; Zhang, Yue4; Qin, Jian5
2024
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
ISSN1939-1404
卷号17页码:17739-17752
通讯作者Wang, Ruifu([email protected])
摘要Many current satellite-derived bathymetry methods usually rely on in-situ water depth, which limits their applications. In this study, an ICESat-2 assisted dual-band model (IDBM) is proposed, which can be used to derive bathymetry independent of in-situ water depth. First, the Sentinel-2 blue and green band diffuse attenuation coefficient is derived using ICESat-2 lidar photon data from adjacent deep water according to the Jerlov K-d spectral curves and the sensor spectral response function. Then, these two coefficients are applied to the IDBM model to derive the water depth. Datasets for four study areas are used to validate the feasibility of the proposed IDBM model, in addition, the original QAA (quasi-analytical algorithm) assisted dual-band model (QDBM) is also used to derive bathymetry for comparison purposes. Experiment results show that the proposed IDBM model is effective and can achieve higher or similar accuracy compared to the original QDBM model. The average mean absolute error (MAE) and root mean square error (RMSE) of the IDBM model reach 1.23 and 1.67 m, while those of the QDBM model are 1.44 and 1.91 m, respectively. The performance of the IDBM model has improved to some extent. Especially for the SI case, the MAE and RMSE of the QDBM model are 1.46 and 2.00 m, while those of the IDBM model are 0.99 and 1.55 m, which are reduced by 0.47 and 0.45 m. In conclusion, the proposed IDBM model is feasible and effective to derive bathymetry without in-situ water depth.
关键词Bathymetry Attenuation Data models Laser radar Analytical models Satellites Hyperspectral imaging Bathymetry retrieval diffuse attenuation coefficient (K-d) ICESat-2 ICESat-2 assisted dual-band model (IDBM)
DOI10.1109/JSTARS.2024.3465599
收录类别SCI
语种英语
资助项目Natural Science Foundation of Shandong Province[ZR2022MD002]; Natural Science Foundation of Shandong Province[ZR2023MD082]; Marine Project[2205cxzx040431]; National Key Research and Development Program of China[2021YFC2803300]
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001336265700013
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词INHERENT OPTICAL-PROPERTIES ; WATER DEPTH ; SATELLITE IMAGERY ; SHALLOW WATERS ; COASTAL ; COLOR ; BACKSCATTERING
引用统计
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/199514
专题中国科学院海洋研究所
通讯作者Wang, Ruifu
作者单位1.Shandong Univ Sci & Technol, Coll Geodesy & Geomatics, Qingdao 266590, Peoples R China
2.Shandong Energy Grp Construction Engn Grp Co Ltd, Geol & Mineral Construct Branch, Jining 272000, Peoples R China
3.Deqing Acad Satellite Applicat, Huzhou 313200, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China
5.Jiangsu Yutu Informat Technol Co Ltd, Nanjing 210000, Peoples R China
推荐引用方式
GB/T 7714
Zhu, Jinshan,Han, Yina,Wang, Ruifu,et al. Bathymetry Retrieval Without In-Situ Depth Using an ICESat-2 Assisted Dual-Band Model[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2024,17:17739-17752.
APA Zhu, Jinshan.,Han, Yina.,Wang, Ruifu.,Yin, Fei.,Liu, Bopeng.,...&Qin, Jian.(2024).Bathymetry Retrieval Without In-Situ Depth Using an ICESat-2 Assisted Dual-Band Model.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,17,17739-17752.
MLA Zhu, Jinshan,et al."Bathymetry Retrieval Without In-Situ Depth Using an ICESat-2 Assisted Dual-Band Model".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 17(2024):17739-17752.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhu, Jinshan]的文章
[Han, Yina]的文章
[Wang, Ruifu]的文章
百度学术
百度学术中相似的文章
[Zhu, Jinshan]的文章
[Han, Yina]的文章
[Wang, Ruifu]的文章
必应学术
必应学术中相似的文章
[Zhu, Jinshan]的文章
[Han, Yina]的文章
[Wang, Ruifu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。