IOCAS-IR
Progress in ENSO prediction and predictability study
Youmin Tang; Rong-Hua Zhang; Ting Liu; Wansuo Duan; Dejian Yang; Fei Zheng; Hongli Ren; Tao Lian; Chuan Gao; Dake Chen; Mu Mu
发表期刊National Science Review
ISSN2095-5138
2018-11-15
出版年2018
卷号v.5期号:06页码:48-61
文献类型CNKI期刊论文
摘要ENSO is the strongest interannual signal in the global climate system with worldwide climatic, ecological and societal impacts. Over the past decades, the research about ENSO prediction and predictability has attracted broad attention. With the development of coupled models, the improvement in initialization schemes and the progress in theoretical studies, ENSO has become the most predictable climate mode at the time scales from months to seasons. This paper reviews in detail the progress in ENSO predictions and predictability studies achieved in recent years. An emphasis is placed on two fundamental issues: the improvement in practical prediction skills and progress in the theoretical study of the intrinsic predictability limit. The former includes progress in the couple models, data assimilations, ensemble predictions and so on, and the latter focuses on efforts in the study of the optimal error growth and in the estimate of the intrinsic predictability limit.
关键词ENSO prediction and predictability coupled model ensemble prediction optimal error growth probabilistic prediction
CNKI专辑号A;C;
CNKI专辑名称基础科学;工程科技Ⅱ辑;
CNKI专题号A009;A010;
CNKI专题名称气象学;海洋学;
分类号P732.4;P714.2
收录类别中科院核心 ; 中科院扩展
语种英文;
资助项目(基金)supported by grants from the National Natural Science Foundation of China(41690124,41690121,41690120,41705049,41621064,41530961) ; the National Key Research and Development Program(2017YFA0604202) ; the National Programe on Global Change and Air-Sea Interaction(GASI-IPOVAI-06) ; the Scientific Research Fund of the Second Institute of Oceanography(JG1810)
文献类型CNKI期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/188724
专题中国科学院海洋研究所
作者单位1.StateKeyLaboratoryofSatelliteOceanEnvironmentDynamics,SecondInstituteofOceanography
2.EnvironmentalScienceandEngineering,UniversityofNorthernBritishColumbia,PrinceGeorge
3.KeyLaboratoryofOceanCirculationandWaves,InstituteofOceanology,ChineseAcademyofSciences
4.QingdaoNationalLaboratoryforMarineScienceandTechnology
5.StateKeyLaboratoryofNumericalModelingforAtmosphericSciencesandGeophysicalFluidDynamics,InstituteofAtmosphericPhysics,ChineseAcademyofSciences
6.CollegeofOceanography,HohaiUniversity
7.InternationalCenterforClimateandEnvironmentScience,InstituteofAtmosphericPhysics,ChineseAcademyofSciences
8.LaboratoryforClimateStudies&CMA—NJUJointLaboratoryforClimatePredictionStudies,NationalClimateCenter,ChinaMeteorologicalAdministration
9.CollegeofAtmosphericandOceanicScience,FudanUniversity
推荐引用方式
GB/T 7714
Youmin Tang,Rong-Hua Zhang,Ting Liu,et al. Progress in ENSO prediction and predictability study. 2018.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Youmin Tang]的文章
[Rong-Hua Zhang]的文章
[Ting Liu]的文章
百度学术
百度学术中相似的文章
[Youmin Tang]的文章
[Rong-Hua Zhang]的文章
[Ting Liu]的文章
必应学术
必应学术中相似的文章
[Youmin Tang]的文章
[Rong-Hua Zhang]的文章
[Ting Liu]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。