铟基MOF及衍生物复合ZnIn2S4材料的制备及其光催化抗菌防污特性研究
段姣
学位类型硕士
导师张杰
2024-05-11
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称生物与医药硕士
关键词金属有机框架材料 光催化 ZnIn2S4 抗菌防污
摘要

海洋是一个复杂环境,海水中富含着多种多样的有机分子和海洋微生物,这些有机分子以及海洋微生物极易附着在海洋环境中的各种材料表面上形成生物膜,从而导致更多海洋生物附着,引起海洋生物污损海洋生物污损是影响和制约海洋事业发展的重要因素此前,防污涂料是最常用的方法之一,但这一技术会对海洋环境和及海洋生物带来二次污染与危害因此,开发新型环保杀菌防污材料来替代有毒的防污材料一直是可持续发展的必然选择。开发以自然资源太阳能驱动的具有高效光催化杀菌防污性能的环保友好型光催化材料,在海洋环境污损防治及细菌防控领域显示广泛的应用前景。

本论文旨在探究新型环保的光催化抗菌防污技术,以金属有机框架材料MIL及其衍生物与具有良好光催化性能的ZnIn2S4半导体材料相结合构造出具有优良性能的光催化复合材料。复合后的半导体材料,弥补了单体材料的缺点,扩大了光吸收范围,增加了表面活性位点,有效地促进了载流子的分离,以获得性能更优的光催化抗菌防污材料。通过选用甲基橙MO做为目标污染物检测材料的光催化降解有机污染物以及在杀菌实验中,选择了大肠杆菌金黄色葡萄球菌以及海水中典型的细菌铜绿假单胞菌做为目标微生物检验材料的光催化抗菌防污性能,最后通过重复试验以及反应前后材料的XRD测试分析,对复合材料的稳定性以及可能的光催化反应机理进行了探究。论文具体研究方案与结论如下:

1)在本论文中通过溶剂热法改性合成了NH2-MIL而后通过原位生长的方法复合ZnIn2S4制备了MIL/ZnIn2S4光催化材料。并采用XRDSEMTEMUV-VISXPS等一系列物理表征手段对其物理性能进行表征。通过测量瞬态电流密度分析其载流子转移效率,通过将其降解常见污染物MO溶液测试其光催化降解能力并且通过光催化杀菌实验测试了其抗菌性能。结果表明合成NH2-MIL呈现良好的微米棒状结构,ZnIn2S4纳米花球均匀地嵌入在NH2-MIL周围。制备的40MIL/ZnIn2S4催化剂光照反应150 min后,可降解溶液中99.0%MO在光照300 min后,40MIL/ZnIn2S4大肠杆菌E. coli、金黄色葡萄球菌S. aureus的抗菌率分别达到99.8%99.9%。重复实验表明材料稳定性良好,通过ESR对其自由基进行了检测,并且提出了光催化效率提高的反应机理。对于解决抗菌防污问题具有实际的应用价值。

2)本论文通过溶剂热法合成了棒状结构的MIL-68In,而后通过二次溶剂热法对MIL进行了硫化,得到空心棒状结构的In2S3,最后通过原位生长合成了不同比例的In2S3/ZnIn2S4复合材料。通过多种方式对其物理性质进行了表征,In2S3/ZnIn2S4光催化剂的形貌为具有空心棒状形貌的In2S3的周围均匀镶嵌着花球形的ZnIn2S4纳米粒子。复合光催化剂表现出比单体材料更优异的瞬态电流密度、光催化降解以及抗菌性能。其中40In2S3/ZnIn2S4光催化剂在可见光照射下,溶液中99.5%MO溶液被降解。在光照420 min后,40In2S3/ZnIn2S4光催化剂铜绿假单胞菌的抗菌率达到99.6%。重复实验表明材料稳定性良好,通过EPR对其自由基进行了检测,分析提出了光催化降解以及抗菌性能的主要反应机理。

3本文采用溶剂热法、煅烧法以及原位生长法成功制备了各种比例的新型In2O3/ZnIn2S4光催化材料。采用各种测试方式对所制备的复合材料以及单体材料的形貌,成分和结构等进行表征。通过调节双组分异质结的比例,获得了最佳的光催化效率。由于单体材料间的结合,有效促进了载流子的分离效率,进而增强光催化抗菌防污性能。在光催化的降解MO实验中,可见光下光照150 min后,超过99.5%MO被降解掉光催化抗菌实验中,铜绿假单胞菌的灭活率达到99.7%。此外,In2O3/ZnIn2S4复合材料在循环实验中表现出良好的稳定性。该研究为构筑高性能的MOF基衍生复合光催化材料提供了新的思路。

其他摘要

The ocean is a complex environment, and the sea water is rich in a variety of organic molecules and Marine microorganisms. These organic molecules and Marine microorganisms are easy to attach to the surface of various materials in the Marine environment to form biofilms, which leads to the attachment of more Marine organisms and causes Marine biological fouling. Marine biological fouling is an important factor affecting and restricting the development of Marine industry, previously, anti-fouling paint is one of the most commonly used methods, but this technology will bring secondary pollution and harm to the Marine environment and Marine organisms. Therefore, the development of new environmental protection antifouling materials to replace toxic antifouling materials has been an inevitable choice for sustainable development. The development of environmentally friendly photocatalytic materials with high efficiency photocatalytic sterilization and antifouling performance driven by natural resources solar energy has shown wide application prospects in the field of Marine environmental pollution control and bacteria prevention and control.

The aim of this paper is to find a new and environmentally friendly photocatalytic antifouling technology, and to construct a photocatalytic composite material with excellent properties by combining MIL and its derivatives with ZnIn2S4 semiconductor material with good photocatalytic properties. The composite semiconductor material can make up for the shortcomings of the monomer material, expand the light absorption range, increase the surface active site, and effectively promote the separation of carrier, so as to obtain the photocatalytic antibacterial antifouling material with better performance. Methyl orange was selected as the target pollutant detection material for photocatalytic degradation of organic pollutants. In the bactericidal experiment, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa, a typical bacterium in seawater, were selected as the target microbial test material for photocatalytic antibacterial and antifouling performance. Finally, repeated tests and XRD analysis of materials before and after the reaction were conducted. The stability of the composite and the possible mechanism of photocatalytic reaction were investigated. The specific research plan and conclusions of this paper are as follows:

  1. In this thesis, NH2-MIL was synthesized by solvothermal modification and then MIL/ZnIn2S4 photocatalytic material was prepared by in-situ synthesis of ZnIn2S4. A series of physical characterization methods such as XRD, SEM, TEM, UV-VIS and XPS were used to characterize its physical properties. The carrier transfer efficiency was tested by measuring the transient current density, the photocatalytic degradation ability was tested by degrading the common pollutant MO solution, and the antibacterial performance was tested by photocatalytic sterilization experiment. The results show that NH2-MIL has a good micrometer rod-like structure, and ZnIn2S4 nanospheres are evenly embedded around NH2-MIL. The prepared 40MIL/ZnIn2S4 catalyst can degrade 99.0% MO in the solution after irradiation for 150 min. After exposure to light for 300 min, the antibacterial rate of 40MIL/ZnIn2S4 against E. coli and S. aureus reached 99.8% and 99.9%, respectively. Repeated experiments showed that the material had good stability. Free radicals were detected by ESR, and the mechanism of photocatalytic efficiency was proposed. It has practical application value to solve the problem of antibacterial and antifouling.
  2. In this thesis, the rod-like structure of MIL-68 (In) was synthesized by solvothermal method, and then the MIL was vulcanized by solvothermal method to obtain In2S3 with hollow rod-like structure. Finally, In2S3/ZnIn2S4 composites with different proportions were synthesized by in-situ growth. The physical properties of the In2S3/ZnIn2S4 photocatalyst were characterized in a variety of ways. The morphology of the In2S3 photocatalyst is as follows: the In2S3 with hollow rod-like morphology is surrounded by ZnIn2S4 nanoparticles with spherical flowers. The composite photocatalyst showed better transient current density, photocatalytic degradation and antibacterial properties than the monomer materials. Among them, 40In2S3/ZnIn2S4 was degraded by 99.5% MO solution in visible light solution. After 420 min of illumination, the antibacterial rate of 40In2S3/ZnIn2S4 photocatalyst against Pseudomonas aeruginosa reached 99.6%. Repeated experiments showed that the material had good stability. The free radicals were detected by EPR, and the main reaction mechanisms of photocatalytic degradation and antibacterial reaction were analyzed.

In this thesis, solvothermal method, calcination method and in-situ growth method were used to successfully prepare various proportions of new In2O3/ZnIn2S4 photocatalytic materials. The morphology, composition and structure of the prepared composite materials and monomer materials were characterized by various testing methods. The optimum photocatalytic efficiency was obtained by adjusting the relative composition of the two-component heterojunction. Due to the combination of monomer materials, the carrier separation efficiency is effectively promoted, and the antibacterial and antifouling performance of photocatalysis is enhanced. In the photocatalytic MO degradation experiment, more than 99.5% of MO was degraded after 150 min of light under visible light. In the photocatalytic antibacterial experiment, the inactivation rate of Pseudomonas aeruginosa reached 99.7%. In addition, In2O3/ZnIn2S4 composites show good stability in cyclic experiments. This study provides a new idea for constructing high performance MOF-derived composite photocatalytic materials.

语种中文
目录

第1章  绪论    1
1.1  研究背景    1
1.2  海洋生物污损    1
1.2.1  海洋生物污损形成过程    1
1.2.2  海洋生物污损的危害及其防护措施    2
1.3  光催化抗菌材料    4
1.3.1  抗菌材料    4
1.3.2  光催化技术    5
1.3.3  光催化抗菌防污技术    5
1.3.4  光催化抗菌防污机理    5
1.3.5  MOF材料简介    7
1.3.6  抗菌性MOF材料的应用    8
1.3.7  MOF衍生材料    9
1.3.8  ZnIn2S4材料    10
1.4  选题依据及研究内容    11
1.4.1  选题依据    11
1.4.2  研究内容    11
第2章  实验部分    13
2.1  材料与试剂    13
2.2  仪器与设备    13
2.3  材料物理表征方法    14
2.3.1  X射线衍射表征    14
2.3.2  扫描电子显微镜表征    15
2.3.3  透射电子显微镜表征    15
2.3.4  紫外可见漫反射表征    15
2.3.5  X射线光电子能谱表征    15
2.3.6  电子自旋共振    15
2.4  细菌培养    15
2.4.1  菌种的选择与保存    15
2.4.2  抗菌材料与器具的准备    16
2.4.3  细菌的悬液制备    16
2.5  光催化性能的研究    17
2.5.1  光催化实验装置    17
2.5.2  光催化降解实验    18
2.5.3  光催化抗菌实验    18
2.5.4  光电化学性能测试    18
2.6  DFT理论计算    19
第3章  NH2-MIL/ZnIn2S4复合材料的制备及其光催化抗菌研究    21
3.1  前言    21
3.2  实验材料的制备    22
3.3  结果与讨论    22
3.3.1  材料的结构、形貌和组成分析    23
3.3.2  光催化降解性能分析    26
3.3.3  光催化抗菌性能分析    27
3.3.4  光催化稳定性分析    28
3.3.5  光催化机理分析    28
3.4  本章小结    32
第4章  MIL衍生In2S3/ZnIn2S4复合材料的制备及其光催化抗菌防污机制研究    35
4.1  前言    35
4.2  实验材料的制备    36
4.3  结果与讨论    37
4.3.1  材料的结构、形貌和组成分析    37
4.3.2  光催化降解性能分析    40
4.3.3  光催化抗菌性能分析    41
4.3.4  光催化稳定性分析    42
4.3.5  光催化机理分析    43
4.4  本章小结    45
第5章  MIL衍生In2O3/ZnIn2S4复合材料的制备及其光催化抗菌防污机制研究    47
5.1  前言    47
5.2  实验材料的制备    47
5.3  结果与讨论    48
5.3.1  材料的结构、形貌和组成分析    48
5.3.2  光催化降解性能分析    51
5.3.3  光催化抗菌性能分析    52
5.3.4  光催化稳定性分析    52
5.3.5  光催化机理分析    53
5.4  本章小结    56
第6章  结论与展望    57
6.1  结论    57
6.2  创新点    58
6.3  展望    59
参考文献    61
致  谢    73
作者简历及攻读学位期间发表的学术论文与其他相关学术成果    75
 

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185258
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
段姣. 铟基MOF及衍生物复合ZnIn2S4材料的制备及其光催化抗菌防污特性研究[D]. 中国科学院海洋研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
毕业论文-JDuan-2024-5.20(5231KB)学位论文 暂不开放CC BY-NC-SA
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[段姣]的文章
百度学术
百度学术中相似的文章
[段姣]的文章
必应学术
必应学术中相似的文章
[段姣]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。