基于协同输出提升的摩擦纳米发电腐蚀防护研究
南有博
学位类型博士
导师王秀通
2024-06-15
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学博士
关键词金属腐蚀 阴极保护 摩擦纳米发电机 绿色防腐 海洋能
摘要

金属腐蚀问题不言而喻相当严峻,其遍及国民经济的各个领域, 同时其危害也遍及所有的行业, 包括冶金、化工、能源、交通、机械、航空航天、基础设施等。腐蚀是安全问题;腐蚀是经济问题;腐蚀是民生问题;腐蚀是生态问题;更是能源问题。

当前,金属腐蚀防护依然主要依赖于化石能源和资源,尤其是工程中普遍使用的外加电流阴极保护腐蚀防护手段,该防护手段是以消耗化石能源转化而成的电能为代价。这种腐蚀防护手段会进一步加重能源和资源问题,阻碍全球迈向碳中和进程。这给腐蚀防护提出了新的要求和挑战。尤其是腐蚀环境严苛,电力资源匮乏的海洋环境面临着更严峻的腐蚀防护挑战。为此,开发和利用清洁可再生的能源,应对腐蚀防护造成的能源和资源危机,实现清洁、低碳化防腐备受腐蚀防护工作者的关注。众所周知,海洋环境中蕴藏着包含太阳能和波浪能在内的巨大的可再生能源,这也为该环境中的金属腐蚀防护带来了新的机遇。因此,如何有效利用太阳和波浪能等绿色能源实现低碳化的腐蚀防护具有重要的现实意义。

为推进低碳绿色腐蚀防护的进程,本文以海洋环境下金属腐蚀防护能源清洁可再生为目标,从材料设计、器件构筑和能量捕获等多角度协同开发了一系列可构筑绿色阴极保护的摩擦纳米发电机(Triboelectric nanogeneratorTENG)。聚焦摩擦材料电荷转移机制设计了不同材料协同提升性能的复合电介质,提升了摩擦纳米发电机的输出性能,设计了可捕获机械能的固-固摩擦纳米发电阴极保护系统;聚焦海洋环境全天候能源捕获设计了以摩擦纳米发电机为外置偏压,以模拟太阳光为驱动力的协同效应阴极保护系统;设计了收集水波能的浸没开放式固-液摩擦纳米发电机,采用多个TENG构成网络的协同作用构建了阴极保护系统,并评价了其在阴极保护方面的应用性能;开发了基于接触起电、静电感应、体积效应和介电电荷泄漏协同效应的交/直流可切换双输出模式固-液摩擦纳米发电机,评价了该摩擦纳米发电机在腐蚀防护方面的应用潜力。

论文主要涉及以下内容:

1)从材料设计的角度出发,设计了具有多层结构的三聚氰胺泡沫(Melamine foamMF/MXene/Ecoflex@TiO2FME@TiO2)不同材料协同复合电介质。研究了3D MF分散MXeneTiO2纳米管阵列膜对FME@TiO2表面电势和介电性能的影响。探究了FMETiO2纳米管阵列之间的自粘附性。基于FME@TiO2复合介质获得了输出性能更优的FME@TiO2-TENG表面电荷密度可达101.2 μC/m2。探究了MXeneTiO2纳米管阵列膜协同提升FME@TiO2-TENG的机理。借助小型电子设备验证了FME@TiO2-TENG的实际供能应用。最后,基于FME@TiO2-TENG优异的输出性能,构建了FME@TiO2-TENG阴极保护系统和原位阴极保护观测系统,在模拟外部机械力的驱动下FME@TiO2-TENG能使Q235碳钢表面电位-0.48 V下降至-1.1 V,表明该保护系统可以实现良好的阴极保护。

2)从合理有效利用海洋环境中能源的角度出发,设计了可实现全天候捕获波浪能和太阳能的阴极保护系统。该系统是模拟海洋环境机械力驱动摩擦纳米发电机为外置偏压,以模拟太阳光为驱动力的协同效应阴极保护系统。该系统由基于Ecoflex@NiFe2O4/TiO2复合电介质的摩擦纳米发电机和CS/NiFe2O4/TiO2光阳极共同组成,摩擦纳米发电机提供外置偏压驱动TiO2基光阳极实现光电阴极保护。具体而言,摩擦纳米发电机利用机械能在摩擦起电和静电感应的基础上形成交流电信号的输出。在全桥整流的作用下将其转化为直流电。该直流电能够加速TiO2基光阳极的光生载流子分离,使光生电子从光阳极导带位置沿着外电路转移至被保护金属上,形成良好的阴极保护效果,进而实现摩擦纳米发电和光生阴极保护协同防腐。当以Ecoflex@NiFe2O4/TiO2-TENG为电源施加外置偏压形成光电阴极保护能使304不锈钢表面电位降至-0.517 V

3)从解决摩擦纳米发电机密封、锚定和大面积部署困难等问题,推进网络式规模化波浪能捕获角度出发,设计了用于波浪能收集的浸没开放式固-液摩擦电纳米发电机(Submerged and completely open solid-liquid TENG, SOSL-TENG)。该摩擦纳米发电机适应各种水环境。而且其结构简单,易于部署到现役的各种海洋工程设施中。重要的是,这不仅解决了目前TENG网络建设困难的问题,而且有效地利用了优质的波浪能资源。系统地研究了摩擦纳米发电机的工作机理和输出性能。在最佳触发条件下,该摩擦纳米发电机的转移电荷Qtr)和短路电流(Isc)分别为2.58 μC85.9 μA。并借助水槽实验充分证明了SOSL-TENG网络在大规模收集和转换波浪能方面的优势。采用多个TENG构成网络的协同作用构建了基于SOSL-TENG网络阴极保护系统,为规模化部署TENG实现绿色能源腐蚀防护应用提供了一个有前景的策略。

4)从摩擦纳米发电机产电过程中的基本物理现象出发,设计了基于接触起电、静电感应、体积效应和介电电荷泄漏的协同效应的交/直流可切换双输出模式固-液摩擦纳米发电机(Switchable dual-output mode TENG, SD-TENG)。该固-液摩擦纳米发电机在一个器件中实现了三种TENG的耦合。一种是基于摩擦起电、静电感应和体积效应的交流TENGBulk effect TENG, BE-TENG)。一种是类似于传统固-固接触滑动式的TENG Contact sliding TENG, CS-TENG)。另外一种是基于接触起电、静电感应和介电电荷泄漏的直流TENG Dielectric charge leakage TENG, DC-TENG)。详细探究了三种TENG的工作机制。确定了电荷富集和介质泄漏在DC-TENG中的作用。SD-TENG的设计扫清了传统AC-TENGDC-TENG寻求高性能输出道路上严苛工作环境和材料选择的障碍。该工作为固-液直流TENG的设计提供了见解,为双模TENG的集成提供了一种新方案。更重要的是,该TENG能够在水波的作用下实现电能输出,为金属阴极腐蚀防护提供清洁的能源。

其他摘要

Metal corrosion is self-evidently quite serious. It covers all fields of the national economy, and its harm also covers all industries, including metallurgy, chemical industry, energy, transportation, machinery, aerospace, infrastructure and so on. Corrosion is a safety issue; Corrosion is an economic problem; Corrosion is a livelihood issue; Corrosion is an ecological problem; It's an energy issue.

Currently, metal corrosion protection still mainly relies on fossil energy and resources, especially the impressed current cathodic protection corrosion protection means commonly used in engineering, which is at the cost of consumption of electric energy converted from fossil energy. This means of corrosion protection will further exacerbate the energy and resource problems and impede the global move towards carbon neutrality. This puts forward new requirements and challenges for corrosion protection. In particular, marine environments with harsh corrosive environments and scarce power resources face even more severe corrosion protection challenges. Therefore, the development and use of clean and renewable energy, to deal with the energy and resource crisis caused by corrosion protection, to achieve clean, low-carbon anticorrosion has been the concern of corrosion protection workers. As we all know, the marine environment contains huge renewable energy including solar energy and wave energy, which also brings new opportunities for metal corrosion protection in this environment. Therefore, how to effectively use the sun and wave energy and other green energy to achieve low-carbon corrosion protection is of great practical significance.

In this work, a series of triboelectric nanogenerators (TENG) which can construct green cathodic protection were developed from multiple perspectives of material design, device construction and energy capture, aiming at clean and renewable energy for metal corrosion protection in Marine environment. Focusing on the charge transfer mechanism of friction materials, the composite dielectric is designed to improve the output performance of TENG. A cathodic protection system for solid-solid TENG which can capture mechanical energy is designed. Focusing on all-weather energy capture in Marine environment, a collaborative cathodic protection system with TENG as external bias and solar simulation as driving force is designed. A solid-liquid TENG with submerged full opening mode for collecting water wave energy is designed and its application performance in cathodic protection is evaluated. An AC/DC switchable dual-output solid-liquid TENG (SD-TENG) based on contact electrification, electrostatic induction, volume effect and dielectric charge leakage was developed, and its application potential in corrosion protection was evaluated.

The specific content and conclusions of this dissertation are as follows:

(1) From the perspective of material design, Melamine foam (MF) /MXene/Ecoflex@TiO2 (FME@TiO2) composites were designed. The effects of 3D MF dispersed MXene and TiO2 nanotube arrays on the surface potential and dielectric properties of FME@TiO2 were investigated. The self-adhesion between FME and TiO2 nanotube arrays was investigated. Based on FME@TiO2 composite dielectric, FME@TiO2-TENG with excellent output performance is obtained. The mechanism of enhancing FME@TiO2-TENG of MXene and TiO2 nanotube arrays was investigated. The practical energy supply application of FME@TiO2-TENG is verified with the help of small electronic equipment. Finally, based on the excellent output performance of FME@TiO2-TENG, the FME@TiO2-TENG cathodic protection system and in-situ cathodic protection observation system are constructed. The FME@TiO2-TENG can reduce the surface potential of Q235 carbon steel from -0.48 V to -1.1 V under the driving of simulated external mechanical force, indicating that the protection system can realize good cathodic protection.

(2) From the perspective of rational and effective utilization of energy in the marine environment, a cathodic protection system that can realize all-weather capture of wave energy and the sun has been designed. The system is a synergistic effect cathodic protection system that simulates the mechanical force-driven friction nanogenerator in the marine environment as an external bias and simulated sunlight as the driving force. The system consists of a TENG based on Ecoflex@NiFe2O4/TiO2 composite dielectric and a CS/NiFe2O4/TiO2 photoanode, and the TENG provides an external bias to drive the TiO2-based photoanode to realize photoelectrochemical cathodic protection. Specifically, the TENG utilizes mechanical energy to form the output of an AC electrical signal. It is converted into DC power under the action of full-bridge rectification. This DC current can accelerate the separation of photogenerated carriers in the TiO2-based photoanode, so that the photogenerated electrons are transferred from the photoanode conduction band position to the protected metal along the external circuit, forming an excellent cathodic protection effect, and thus realizing the synergistic anticorrosion of TENG and photocathodic protection. When Ecoflex@NiFe2O4/TiO2-TENG is used as the power supply to apply external bias to the photoanode to form photocathodic protection, the surface potential of 304 stainless steel can be reduced to -0.517 V.

(3) In order to solve the problems of sealing, anchoring and large-area deployment of TENG, and promote the large-scale wave energy capture of network type, a solid-liquid triboelectric nanogenerator (SOSL-TENG) with submerged fully open mode for wave energy collection is designed. The TENG can adapt to various water environments. Moreover, its structure is simple and easy to deploy to various marine engineering facilities in active service. Importantly, this not only solves the current difficult problem of TENG network construction, but also effectively utilizes high-quality wave energy resources. The working mechanism and output performance of TENG are investigated systematically. Under optimal triggering conditions, the transfer charge (Qtr) and short circuit current (Isc) of the friction nanogenerator are 2.58 μC and 85.9 μA, respectively. The advantages of SOSL-TENG network in collecting and converting wave energy on a large scale are fully demonstrated by pool experiments. A cathodic protection system based on SOSL-TENG network synergistic effect is constructed, which provides a promising strategy for large-scale deployment of TENG for green energy corrosion protection applications.

(4) Based on the basic physical phenomena during the generation of TENG, a switching dual-output AC/DC solid-liquid TENG (SD-TENG) was designed based on contact electrification, electrostatic induction, volume effect and dielectric charge leakage. The solid-liquid TENG realizes the coupling of three kinds of TENG in one device. One is the AC TENG (BE-TENG) based on contact electrification, electrostatic induction and volumetric effect. One is similar to the traditional solid-solid contact sliding TENG (CS-TENG). The other is the direct current TENG (DC-TENG) based on contact electrification, electrostatic induction and dielectric charge leakage. The working mechanism of three kinds of TENG is explored in detail. The roles of charge enrichment and dielectric leakage in DC-TENG were determined. The design of the SD-TENG removes the obstacles of the demanding working environment and material selection on the path of the traditional AC-TENG and DC-TENG seeking high-performance output. This work provides insights into the design of solid-liquid DC TENG and a new scheme for the integration of dual-mode TENG. More importantly, the TENG can achieve electrical energy output under the action of water waves, providing clean energy for metal cathodic corrosion protection.

语种中文
目录

 

 

 

 

                                        

1 绪论... 1

1.1 金属腐蚀... 1

1.1.1 海洋环境金属腐蚀... 2

1.1.2 海洋环境金属腐蚀防护... 5

1.2 阴极保护技术... 5

1.2.1 传统阴极保护... 5

1.2.2 新型阴极保护... 6

1.3 摩擦纳米发电及阴极保护技术现状... 7

1.3.1 摩擦纳米发电技术... 7

1.3.2 摩擦纳米发电阴极保护技术现状... 13

1.4 本论文选题意义及研究内容... 16

1.4.1 选题意义... 16

1.4.2 研究内容... 16

2 基于三聚氰胺泡沫/MXene/Ecoflex@TiO2复合电介质摩擦纳米发电机阴极保护研究... 18

2.1 引言... 18

2.2 实验部分... 19

2.2.1 实验材料与试剂... 19

2.2.2 实验仪器与设备... 19

2.2.3 实验材料制备... 20

2.2.4 材料表征... 22

2.3 结果与讨论... 22

2.3.1 复合电介质表征... 22

2.3.2 基于不同复合介质的TENG电学特性及机理探究... 29

2.3.3 FME@TiO2-TENG输出性能系统探究... 37

2.3.4 FME@TiO2-TENG供能应用及阴极保护分析... 40

2.4 小结... 44

3 基于Ecoflex@NiFe2O4/TiO2复合电介质摩擦纳米发电机偏压的光电阴极保护研究... 46

3.1 引言... 46

3.2 实验部分... 47

3.2.1 实验材料与试剂... 47

3.2.2 实验仪器与设备... 47

3.2.3 摩擦层及光阳极的制备... 48

3.2.4 摩擦纳米发电机的制备... 49

3.2.5 输出性能测试与评价... 50

3.3 结果与讨论... 50

3.3.1 基于摩擦纳米发电机偏压的光电阴极保护系统设计及概念... 50

3.3.2 基于Ecoflex@NiFe2O4/TiO2复合电介质TENG输出性能分析... 51

3.3.3 光阳极材料表征及光电性能分析... 55

3.3.4 光阳极电荷转移路径和机理分析... 67

3.3.5 基于摩擦纳米发电机偏压的光电阴极保护分析... 70

3.4 小结... 74

4 基于浸没开放式固-液摩擦电纳米发电机阴极保护研究... 75

4.1 引言... 75

4.2 实验部分... 76

4.2.1 实验材料与试剂... 76

4.2.2 实验仪器与设备... 77

4.2.3 SOSL-TENG制备... 77

4.2.4 输出性能测试与评价... 77

4.3 结果与讨论... 78

4.3.1 SOSL-TENG结构设计和原理... 78

4.3.2 不同负摩擦材料对SOSL-TENG输出性能的影响... 82

4.3.3 不同激励频率对SOSL-TENG输出性能的影响... 83

4.3.4 不同溶液及电导率对SOSL-TENG输出性能的影响... 85

4.3.5 SOSL-TENG水波能捕获性能评价... 87

4.3.6 SOSL-TENG供能应用及阴极保护分析... 90

4.4 小结... 94

5 基于交流和直流可切换双模固-液摩擦纳米发电机阴极保护研究... 96

5.1 引言... 96

5.2 实验部分... 97

5.2.1 实验材料与试剂... 97

5.2.2 实验仪器与设备... 97

5.2.3 摩擦纳米发电机的制备... 98

5.2.4 输出性能测试与评价... 98

5.3 结果与讨论... 98

5.3.1 SD-TENG结构及工作原理... 98

5.3.2 下电极与负摩擦层面积比对SD-TENG输出性能的影响... 104

5.3.3 溶液离子浓度对SD-TENG输出性能影响... 109

5.3.4 SD-TENG输出对频率依赖性分析... 110

5.3.5 SD-TENG供能应用及阴极保护分析... 112

5.4 小结... 115

6 结论与展望... 116

6.1 结论... 116

6.2 创新点... 117

6.3 展望... 118

参考文献... 119

致谢... 137

作者简历及攻读学位期间发表的学术论文与其他相关学术成果... 138

 

 

 

 

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185173
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
南有博. 基于协同输出提升的摩擦纳米发电腐蚀防护研究[D]. 中国科学院海洋研究所. 中国科学院大学,2024.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
基于协同输出提升的摩擦纳米发电腐蚀防护研(12271KB)学位论文 限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[南有博]的文章
百度学术
百度学术中相似的文章
[南有博]的文章
必应学术
必应学术中相似的文章
[南有博]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 基于协同输出提升的摩擦纳米发电腐蚀防护研究.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。