IOCAS-IR  > 海洋环流与波动重点实验室
DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery
Liu, Aiyue1,2; Liu, Yuhai1,2; Xu, Kuidong3; Zhao, Feng3; Zhou, Yuan4; Li, Xiaofeng1,2
2024
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号62页码:13
通讯作者Li, Xiaofeng([email protected])
摘要The detection and preservation of marine biodiversity have garnered global attention. The incorporation of deep learning methodologies can elevate the efficiency of species detection. In this study, we developed a DeepSeaNet for effective localization and accurate classification of organisms based on deep-sea images, as well as for hinting at unknown organisms (new species). The DeepSeaNet fully accommodates the unique characteristics of deep-sea organisms and imaging environment, leading to remarkable advancements in fine-grained analysis and accuracy. The DeepSeaNet comprises two network components: a deep-sea classes detection network (CDN) and an unsupervised species clustering network (SCN). CDN is used for biological class detection and is specifically tailored for deep-sea environments. It incorporates modules for feature fusion, multiscale analysis, and self-attention. SCN is specifically designed to detect and identify new species by utilizing the location information extracted from the CDN output results. It is composed of a feature extraction module and a clustering module. By collecting deep-sea image data from the "KeXue" Science Research Vessel, we constructed a dataset totaling 29 436 images of deep-sea organisms covering more than 500 species of deep-sea seamount organisms. This dataset serves as the foundational dataset for our experiment. As a result, our model achieves an 82.18% mean average precision (mAP) for class detection and a 43.4% accuracy for species detection. Furthermore, the model has the capability to identify new species through the computation of interspecies distances.
关键词Data augmentation deep-sea remotely operated vehicle (ROV) data new species indication real-time object detection network seamount fine-grained dataset
DOI10.1109/TGRS.2024.3359350
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001173250800024
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/185162
专题海洋环流与波动重点实验室
海洋生物分类与系统演化实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
3.Chinese Acad Sci, Lab Marine Organism Taxon & Phylogeny, Inst Oceanol, Qingdao 266071, Peoples R China
4.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
第一作者单位海洋环流与波动重点实验室
通讯作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Liu, Aiyue,Liu, Yuhai,Xu, Kuidong,et al. DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:13.
APA Liu, Aiyue,Liu, Yuhai,Xu, Kuidong,Zhao, Feng,Zhou, Yuan,&Li, Xiaofeng.(2024).DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,13.
MLA Liu, Aiyue,et al."DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):13.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
93ff23acd793dd592480(2856KB)期刊论文作者接受稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Liu, Aiyue]的文章
[Liu, Yuhai]的文章
[Xu, Kuidong]的文章
百度学术
百度学术中相似的文章
[Liu, Aiyue]的文章
[Liu, Yuhai]的文章
[Xu, Kuidong]的文章
必应学术
必应学术中相似的文章
[Liu, Aiyue]的文章
[Liu, Yuhai]的文章
[Xu, Kuidong]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 93ff23acd793dd59248085a43ca8a3db.pdf
格式: Adobe PDF
此文件暂不支持浏览
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。