Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery | |
Liu, Aiyue1,2; Liu, Yuhai1,2; Xu, Kuidong3; Zhao, Feng3; Zhou, Yuan4; Li, Xiaofeng1,2 | |
2024 | |
发表期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING |
ISSN | 0196-2892 |
卷号 | 62页码:13 |
通讯作者 | Li, Xiaofeng([email protected]) |
摘要 | The detection and preservation of marine biodiversity have garnered global attention. The incorporation of deep learning methodologies can elevate the efficiency of species detection. In this study, we developed a DeepSeaNet for effective localization and accurate classification of organisms based on deep-sea images, as well as for hinting at unknown organisms (new species). The DeepSeaNet fully accommodates the unique characteristics of deep-sea organisms and imaging environment, leading to remarkable advancements in fine-grained analysis and accuracy. The DeepSeaNet comprises two network components: a deep-sea classes detection network (CDN) and an unsupervised species clustering network (SCN). CDN is used for biological class detection and is specifically tailored for deep-sea environments. It incorporates modules for feature fusion, multiscale analysis, and self-attention. SCN is specifically designed to detect and identify new species by utilizing the location information extracted from the CDN output results. It is composed of a feature extraction module and a clustering module. By collecting deep-sea image data from the "KeXue" Science Research Vessel, we constructed a dataset totaling 29 436 images of deep-sea organisms covering more than 500 species of deep-sea seamount organisms. This dataset serves as the foundational dataset for our experiment. As a result, our model achieves an 82.18% mean average precision (mAP) for class detection and a 43.4% accuracy for species detection. Furthermore, the model has the capability to identify new species through the computation of interspecies distances. |
关键词 | Data augmentation deep-sea remotely operated vehicle (ROV) data new species indication real-time object detection network seamount fine-grained dataset |
DOI | 10.1109/TGRS.2024.3359350 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:001173250800024 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/185162 |
专题 | 海洋环流与波动重点实验室 海洋生物分类与系统演化实验室 |
通讯作者 | Li, Xiaofeng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China 3.Chinese Acad Sci, Lab Marine Organism Taxon & Phylogeny, Inst Oceanol, Qingdao 266071, Peoples R China 4.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China |
第一作者单位 | 海洋环流与波动重点实验室 |
通讯作者单位 | 海洋环流与波动重点实验室 |
推荐引用方式 GB/T 7714 | Liu, Aiyue,Liu, Yuhai,Xu, Kuidong,et al. DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2024,62:13. |
APA | Liu, Aiyue,Liu, Yuhai,Xu, Kuidong,Zhao, Feng,Zhou, Yuan,&Li, Xiaofeng.(2024).DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,62,13. |
MLA | Liu, Aiyue,et al."DeepSeaNet: A Bio-Detection Network Enabling Species Identification in the Deep Sea Imagery".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 62(2024):13. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
93ff23acd793dd592480(2856KB) | 期刊论文 | 作者接受稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论