IOCAS-IR
Tropical cyclone intensity forecasting using model knowledge guided deep learning model
Wang, Chong1,2; Li, Xiaofeng1; Zheng, Gang3
2024-02-01
发表期刊ENVIRONMENTAL RESEARCH LETTERS
ISSN1748-9326
卷号19期号:2页码:10
通讯作者Li, Xiaofeng([email protected]) ; Zheng, Gang([email protected])
摘要This paper developed a deep learning (DL) model for forecasting tropical cyclone (TC) intensity in the Northwest Pacific. A dataset containing 20 533 synchronized and collocated samples was assembled, which included ERA5 reanalysis data as well as satellite infrared (IR) imagery, covering the period from 1979 to 2021. The u-, v- and w-components of wind, sea surface temperature, IR satellite imagery, and historical TC information were selected as the model inputs. Then, a TC-intensity-forecast-fusion (TCIF-fusion) model was developed, in which two special branches were designed to learn multi-factor information to forecast 24 h TC intensity. Finally, heatmaps capturing the model's insights are generated and applied to the original input data, creating an enhanced input set that results in more accurate forecasting. Employing this refined input, the heatmaps (model knowledge) were used to guide TCIF-fusion model modeling, and the model-knowledge-guided TCIF-fusion model achieved a 24 h forecast error of 3.56 m s-1 for Northwest Pacific TCs spanning 2020-2021. The results show that the performance of our method is significantly better than the official subjective prediction and advanced DL methods in forecasting TC intensity by 4% to 22%. Additionally, compared to operational approaches, model-guided knowledge methods can better forecast the intensity of landfalling TCs.
关键词tropical cyclone intensity forecast deep learning model knowledge
DOI10.1088/1748-9326/ad1bde
收录类别SCI
语种英语
资助项目Zhejiang Provincial Natural Science Foundation of China; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000]; Major Scientific and Technological Innovation Projects in Shandong Province[2019JZZY010102]; [LR21D060002]
WOS研究方向Environmental Sciences & Ecology ; Meteorology & Atmospheric Sciences
WOS类目Environmental Sciences ; Meteorology & Atmospheric Sciences
WOS记录号WOS:001144262300001
出版者IOP Publishing Ltd
WOS关键词PREDICTION SCHEME SHIPS ; ATLANTIC
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/184399
专题中国科学院海洋研究所
通讯作者Li, Xiaofeng; Zheng, Gang
作者单位1.Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Univ Chinese Acad Sci, Beijing, Peoples R China
3.Minist Nat Resources, Inst Oceanog 2, State Key Lab Satellite Ocean Environm Dynam, Hangzhou, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Wang, Chong,Li, Xiaofeng,Zheng, Gang. Tropical cyclone intensity forecasting using model knowledge guided deep learning model[J]. ENVIRONMENTAL RESEARCH LETTERS,2024,19(2):10.
APA Wang, Chong,Li, Xiaofeng,&Zheng, Gang.(2024).Tropical cyclone intensity forecasting using model knowledge guided deep learning model.ENVIRONMENTAL RESEARCH LETTERS,19(2),10.
MLA Wang, Chong,et al."Tropical cyclone intensity forecasting using model knowledge guided deep learning model".ENVIRONMENTAL RESEARCH LETTERS 19.2(2024):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
[Zheng, Gang]的文章
百度学术
百度学术中相似的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
[Zheng, Gang]的文章
必应学术
必应学术中相似的文章
[Wang, Chong]的文章
[Li, Xiaofeng]的文章
[Zheng, Gang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。