IOCAS-IR  > 海洋环流与波动重点实验室
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations
Qi, Jifeng1,2; Sun, Guimin1,2; Xie, Bowen1,3; Li, Delei1; Yin, Baoshu1,2,4
2024-01-11
发表期刊JOURNAL OF OCEANOLOGY AND LIMNOLOGY
ISSN2096-5508
页码13
通讯作者Qi, Jifeng([email protected])
摘要Accurately estimating the ocean subsurface salinity structure (OSSS) is crucial for understanding ocean dynamics and predicting climate variations. We present a convolutional neural network (CNN) model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations. We evaluated the performance of the CNN model in terms of its vertical and spatial distribution, as well as seasonal variation of OSSS estimation. Results demonstrate that the CNN model accurately estimates most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS. However, the estimation accuracy of the CNN model varies with depth, with the most challenging depth being approximately 70 m, corresponding to the halocline layer. Validations of the CNN model's accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes. The results show that the CNN model effectively captures the seasonal variability of salinity, demonstrating its high performance in salinity estimation using sea surface data. Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers, while sea surface height anomaly plays a more significant role in deeper layers. These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques.
关键词machine learning convolutional neural network (CNN) ocean subsurface salinity structure (OSSS) Indian Ocean satellite observations
DOI10.1007/s00343-023-3063-z
收录类别SCI
语种英语
资助项目Chinese Academy of Sciences
WOS研究方向Marine & Freshwater Biology ; Oceanography
WOS类目Limnology ; Oceanography
WOS记录号WOS:001141710300004
出版者SCIENCE PRESS
WOS关键词SEA-SURFACE SALINITY ; THERMAL STRUCTURE ; IN-SITU ; TEMPERATURE ; AQUARIUS
引用统计
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/184369
专题海洋环流与波动重点实验室
海洋生态与环境科学重点实验室
通讯作者Qi, Jifeng
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
3.Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, CAS Engn Lab Marine Ranching, Qingdao 266071, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Qi, Jifeng,Sun, Guimin,Xie, Bowen,et al. Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations[J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY,2024:13.
APA Qi, Jifeng,Sun, Guimin,Xie, Bowen,Li, Delei,&Yin, Baoshu.(2024).Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations.JOURNAL OF OCEANOLOGY AND LIMNOLOGY,13.
MLA Qi, Jifeng,et al."Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations".JOURNAL OF OCEANOLOGY AND LIMNOLOGY (2024):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Qi, Jifeng]的文章
[Sun, Guimin]的文章
[Xie, Bowen]的文章
百度学术
百度学术中相似的文章
[Qi, Jifeng]的文章
[Sun, Guimin]的文章
[Xie, Bowen]的文章
必应学术
必应学术中相似的文章
[Qi, Jifeng]的文章
[Sun, Guimin]的文章
[Xie, Bowen]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。