Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations | |
Qi, Jifeng1,2; Sun, Guimin1,2; Xie, Bowen1,3; Li, Delei1; Yin, Baoshu1,2,4 | |
2024-01-11 | |
发表期刊 | JOURNAL OF OCEANOLOGY AND LIMNOLOGY |
ISSN | 2096-5508 |
页码 | 13 |
通讯作者 | Qi, Jifeng([email protected]) |
摘要 | Accurately estimating the ocean subsurface salinity structure (OSSS) is crucial for understanding ocean dynamics and predicting climate variations. We present a convolutional neural network (CNN) model to estimate the OSSS in the Indian Ocean using satellite data and Argo observations. We evaluated the performance of the CNN model in terms of its vertical and spatial distribution, as well as seasonal variation of OSSS estimation. Results demonstrate that the CNN model accurately estimates most significant salinity features in the Indian Ocean using sea surface data with no significant differences from Argo-derived OSSS. However, the estimation accuracy of the CNN model varies with depth, with the most challenging depth being approximately 70 m, corresponding to the halocline layer. Validations of the CNN model's accuracy in estimating OSSS in the Indian Ocean are also conducted by comparing Argo observations and CNN model estimations along two selected sections and four selected boxes. The results show that the CNN model effectively captures the seasonal variability of salinity, demonstrating its high performance in salinity estimation using sea surface data. Our analysis reveals that sea surface salinity has the strongest correlation with OSSS in shallow layers, while sea surface height anomaly plays a more significant role in deeper layers. These preliminary results provide valuable insights into the feasibility of estimating OSSS using satellite observations and have implications for studying upper ocean dynamics using machine learning techniques. |
关键词 | machine learning convolutional neural network (CNN) ocean subsurface salinity structure (OSSS) Indian Ocean satellite observations |
DOI | 10.1007/s00343-023-3063-z |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Chinese Academy of Sciences |
WOS研究方向 | Marine & Freshwater Biology ; Oceanography |
WOS类目 | Limnology ; Oceanography |
WOS记录号 | WOS:001141710300004 |
出版者 | SCIENCE PRESS |
WOS关键词 | SEA-SURFACE SALINITY ; THERMAL STRUCTURE ; IN-SITU ; TEMPERATURE ; AQUARIUS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/184369 |
专题 | 海洋环流与波动重点实验室 海洋生态与环境科学重点实验室 |
通讯作者 | Qi, Jifeng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100049, Peoples R China 3.Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao 266061, Peoples R China 4.Chinese Acad Sci, Inst Oceanol, CAS Engn Lab Marine Ranching, Qingdao 266071, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Qi, Jifeng,Sun, Guimin,Xie, Bowen,et al. Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations[J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY,2024:13. |
APA | Qi, Jifeng,Sun, Guimin,Xie, Bowen,Li, Delei,&Yin, Baoshu.(2024).Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations.JOURNAL OF OCEANOLOGY AND LIMNOLOGY,13. |
MLA | Qi, Jifeng,et al."Deep learning to estimate ocean subsurface salinity structure in the Indian Ocean using satellite observations".JOURNAL OF OCEANOLOGY AND LIMNOLOGY (2024):13. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论