IOCAS-IR  > 实验海洋生物学重点实验室
Quality recognition method of oyster based on U-net and random forest
Zhao, Feng1; Hao, Jinyu1; Zhang, Huanjia1; Yu, Xiaoning1; Yan, Zhenzhen1; Wu, Fucun2,3,4,5
2024
发表期刊JOURNAL OF FOOD COMPOSITION AND ANALYSIS
ISSN0889-1575
卷号125页码:9
通讯作者Wu, Fucun([email protected])
摘要Oysters are one of the most important cultivated marine resources globally. The shape of oysters is an essential reference criterion for consumers to judge the quality of oysters. In order to recognize oyster's shape, the U-Net model and random forest are combined to compose a creative strategy. To be more specific, the U-Net neural network model is firstly developed to segment the image and obtain the contours of oysters, and the shape features of oysters are extracted. Then, a random forest model with shape feature parameters depending on customer preference is created to identify oyster quality. The results indicate that the intersection-over-union of segmentation outcomes achieved by U-Net reaches 99.06%, surpassing the 93.50% obtained by traditional methods. The accuracy of the classification strategy based on the shape features parameters of consumer preference is 94.18%, which further proves the effectiveness of the proposed strategy. This study might provide valuable data and guidelines to oyster product classification based on shell shape within market contexts.
关键词Oyster Quality recognition U-Net Random forest Consumer preference
DOI10.1016/j.jfca.2023.105746
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA 24030105]; National Natural Science Foundation of China[62176140]; National Natural Science Foundation of China[82001775]; National Natural Science Foundation of China[61972235]; National Natural Science Foundation of China[61976124]; National Natural Science Foundation of China[61873117]; National Natural Science Foundation of China[61976125]; Key Research and Development Program of Shandong[2022LZGC015]; Key Research and Development Program of Shandong[ZFJH202309]
WOS研究方向Chemistry ; Food Science & Technology
WOS类目Chemistry, Applied ; Food Science & Technology
WOS记录号WOS:001098748800001
出版者ACADEMIC PRESS INC ELSEVIER SCIENCE
WOS关键词IMAGE ; LINE
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/183862
专题实验海洋生物学重点实验室
通讯作者Wu, Fucun
作者单位1.Shandong Technol & Business Univ, Sch Comp Sci & Technol, Yantai, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Ctr Ocean Mega Sci, CAS & Shandong Prov Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
3.Pilot Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao 266237, Peoples R China
4.Natl & Local Joint Engn Lab Ecol Mariculture, Qingdao 266071, Peoples R China
5.Shandong Technol Innovat Ctr Oyster Seed Ind, Qingdao, Peoples R China
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Zhao, Feng,Hao, Jinyu,Zhang, Huanjia,et al. Quality recognition method of oyster based on U-net and random forest[J]. JOURNAL OF FOOD COMPOSITION AND ANALYSIS,2024,125:9.
APA Zhao, Feng,Hao, Jinyu,Zhang, Huanjia,Yu, Xiaoning,Yan, Zhenzhen,&Wu, Fucun.(2024).Quality recognition method of oyster based on U-net and random forest.JOURNAL OF FOOD COMPOSITION AND ANALYSIS,125,9.
MLA Zhao, Feng,et al."Quality recognition method of oyster based on U-net and random forest".JOURNAL OF FOOD COMPOSITION AND ANALYSIS 125(2024):9.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhao, Feng]的文章
[Hao, Jinyu]的文章
[Zhang, Huanjia]的文章
百度学术
百度学术中相似的文章
[Zhao, Feng]的文章
[Hao, Jinyu]的文章
[Zhang, Huanjia]的文章
必应学术
必应学术中相似的文章
[Zhao, Feng]的文章
[Hao, Jinyu]的文章
[Zhang, Huanjia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。