IOCAS-IR  > 海洋环流与波动重点实验室
Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height
Xin, Linchao1,2,3; Hu, Shijian1,2,3; Wang, Fan1,2,3; Xie, Wenhong4; Hu, Dunxin1,2,3; Dong, Changming4
2023-01-26
发表期刊FRONTIERS IN MARINE SCIENCE
卷号10页码:10
通讯作者Hu, Shijian([email protected])
摘要The Indonesian Throughflow (ITF) connects the tropical Pacific and Indian Oceans and is critical to the regional and global climate systems. Previous research indicates that the Indo-Pacific pressure gradient is a major driver of the ITF, implying the possibility of forecasting ITF transport by the sea surface height (SSH) of the Indo-Pacific Ocean. Here we used a deep-learning approach with the convolutional neural network (CNN) model to reproduce ITF transport. The CNN model was trained with a random selection of the Coupled Model Intercomparison Project Phase 6 (CMIP6) simulations and verified with residual components of the CMIP6 simulations. A test of the training results showed that the CNN model with SSH is able to reproduce approximately 90% of the total variance of ITF transport. The CNN model with CMIP6 was then transformed to the Simple Ocean Data Assimilation (SODA) dataset and this transformed model reproduced approximately 80% of the total variance of ITF transport in the SODA. A time series of ITF transport, verified by Monitoring the ITF (MITF) and International Nusantara Stratification and Transport (INSTANT) measurements of ITF, was then produced by the model using satellite observations from 1993 to 2021. We discovered that the CNN model can make a valid prediction with a lead time of 7 months, implying that the ITF transport can be predicted using the deep-learning approach with SSH data.
关键词Indonesian Throughflow sea surface height neural network deep learning CNN
DOI10.3389/fmars.2023.1079286
收录类别SCI
语种英语
WOS研究方向Environmental Sciences & Ecology ; Marine & Freshwater Biology
WOS类目Environmental Sciences ; Marine & Freshwater Biology
WOS记录号WOS:000928710900001
出版者FRONTIERS MEDIA SA
WOS关键词INDIAN-OCEAN ; PACIFIC ; VARIABILITY ; EXCHANGE ; CIRCULATION ; CURRENTS ; IMPACTS ; MODEL
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/183444
专题海洋环流与波动重点实验室
通讯作者Hu, Shijian
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Pilot Natl Lab Marine Sci & Technol Qingdao, Qingdao, Peoples R China
3.Univ Chinese Acad Sci, Coll Marine Sci, Qingdao, Peoples R China
4.Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Nanjing, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Xin, Linchao,Hu, Shijian,Wang, Fan,et al. Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height[J]. FRONTIERS IN MARINE SCIENCE,2023,10:10.
APA Xin, Linchao,Hu, Shijian,Wang, Fan,Xie, Wenhong,Hu, Dunxin,&Dong, Changming.(2023).Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height.FRONTIERS IN MARINE SCIENCE,10,10.
MLA Xin, Linchao,et al."Using a deep-learning approach to infer and forecast the Indonesian Throughflow transport from sea surface height".FRONTIERS IN MARINE SCIENCE 10(2023):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Xin, Linchao]的文章
[Hu, Shijian]的文章
[Wang, Fan]的文章
百度学术
百度学术中相似的文章
[Xin, Linchao]的文章
[Hu, Shijian]的文章
[Wang, Fan]的文章
必应学术
必应学术中相似的文章
[Xin, Linchao]的文章
[Hu, Shijian]的文章
[Wang, Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。