Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model | |
Wang, Yunhe1; Yuan, Xiaojun2; Ren, Yibin1; Bushuk, Mitchell3; Shu, Qi4; Li, Cuihua2; Li, Xiaofeng1 | |
2023-09-16 | |
发表期刊 | GEOPHYSICAL RESEARCH LETTERS |
ISSN | 0094-8276 |
卷号 | 50期号:17页码:10 |
通讯作者 | Yuan, Xiaojun([email protected]) ; Li, Xiaofeng([email protected]) |
摘要 | Antarctic sea ice concentration (SIC) prediction at seasonal scale has been documented, but a gap remains at subseasonal scale (1-8 weeks) due to limited understanding of ice-related physical mechanisms. To overcome this limitation, we developed a deep learning model named Sea Ice Prediction Network (SIPNet) that can predict SIC without the need to account for complex physical processes. Compared to mainstream dynamical models like European Centre for Medium-Range Weather Forecasts, National Centers for Environmental Prediction, and Seamless System for Prediction and Earth System Research developed at Geophysical Fluid Dynamics Laboratory, as well as a relatively advanced statistical model like the linear Markov model, SIPNet outperforms them all, effectively filling the gap in subseasonal Antarctic SIC prediction capability. SIPNet results indicate that autumn SIC variability contributes the most to sea ice predictability, whereas spring contributes the least. In addition, the Weddell Sea displays the highest sea ice predictability, while predictability is low in the West Pacific. SIPNet can also capture the signal of ENSO and SAM on sea ice. |
关键词 | Antarctic sea ice prediction |
DOI | 10.1029/2023GL104347 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | This work is supported by the Natural Science Foundation of Shandong Province, China (ZR2021QD059); National Natural Science Foundation of China (42106223 and 42206202); China Postdoctoral Science Foundation (2020TQ0322); and Strategic Priority Research Pr[42106223]; Natural Science Foundation of Shandong Province, China[42206202]; Natural Science Foundation of Shandong Province, China[2020TQ0322]; National Natural Science Foundation of China[XDB42000000]; China Postdoctoral Science Foundation; Strategic Priority Research Program of the Chinese Academy of Sciences; Lamont-Doherty Earth Observatory of Columbia University; [ZR2021QD059] |
WOS研究方向 | Geology |
WOS类目 | Geosciences, Multidisciplinary |
WOS记录号 | WOS:001058983400001 |
出版者 | AMER GEOPHYSICAL UNION |
WOS关键词 | PREDICTABILITY ; FORECAST ; IMPACTS ; TRENDS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/182937 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Yuan, Xiaojun; Li, Xiaofeng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 2.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA 3.NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA 4.Minist Nat Resources, Inst Oceanog 1, Qingdao, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Wang, Yunhe,Yuan, Xiaojun,Ren, Yibin,et al. Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model[J]. GEOPHYSICAL RESEARCH LETTERS,2023,50(17):10. |
APA | Wang, Yunhe.,Yuan, Xiaojun.,Ren, Yibin.,Bushuk, Mitchell.,Shu, Qi.,...&Li, Xiaofeng.(2023).Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model.GEOPHYSICAL RESEARCH LETTERS,50(17),10. |
MLA | Wang, Yunhe,et al."Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model".GEOPHYSICAL RESEARCH LETTERS 50.17(2023):10. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论