IOCAS-IR  > 海洋环流与波动重点实验室
Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model
Wang, Yunhe1; Yuan, Xiaojun2; Ren, Yibin1; Bushuk, Mitchell3; Shu, Qi4; Li, Cuihua2; Li, Xiaofeng1
2023-09-16
发表期刊GEOPHYSICAL RESEARCH LETTERS
ISSN0094-8276
卷号50期号:17页码:10
通讯作者Yuan, Xiaojun([email protected]) ; Li, Xiaofeng([email protected])
摘要Antarctic sea ice concentration (SIC) prediction at seasonal scale has been documented, but a gap remains at subseasonal scale (1-8 weeks) due to limited understanding of ice-related physical mechanisms. To overcome this limitation, we developed a deep learning model named Sea Ice Prediction Network (SIPNet) that can predict SIC without the need to account for complex physical processes. Compared to mainstream dynamical models like European Centre for Medium-Range Weather Forecasts, National Centers for Environmental Prediction, and Seamless System for Prediction and Earth System Research developed at Geophysical Fluid Dynamics Laboratory, as well as a relatively advanced statistical model like the linear Markov model, SIPNet outperforms them all, effectively filling the gap in subseasonal Antarctic SIC prediction capability. SIPNet results indicate that autumn SIC variability contributes the most to sea ice predictability, whereas spring contributes the least. In addition, the Weddell Sea displays the highest sea ice predictability, while predictability is low in the West Pacific. SIPNet can also capture the signal of ENSO and SAM on sea ice.
关键词Antarctic sea ice prediction
DOI10.1029/2023GL104347
收录类别SCI
语种英语
资助项目This work is supported by the Natural Science Foundation of Shandong Province, China (ZR2021QD059); National Natural Science Foundation of China (42106223 and 42206202); China Postdoctoral Science Foundation (2020TQ0322); and Strategic Priority Research Pr[42106223]; Natural Science Foundation of Shandong Province, China[42206202]; Natural Science Foundation of Shandong Province, China[2020TQ0322]; National Natural Science Foundation of China[XDB42000000]; China Postdoctoral Science Foundation; Strategic Priority Research Program of the Chinese Academy of Sciences; Lamont-Doherty Earth Observatory of Columbia University; [ZR2021QD059]
WOS研究方向Geology
WOS类目Geosciences, Multidisciplinary
WOS记录号WOS:001058983400001
出版者AMER GEOPHYSICAL UNION
WOS关键词PREDICTABILITY ; FORECAST ; IMPACTS ; TRENDS
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/182937
专题海洋环流与波动重点实验室
通讯作者Yuan, Xiaojun; Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Columbia Univ, Lamont Doherty Earth Observ, Palisades, NY 10964 USA
3.NOAA, Geophys Fluid Dynam Lab, Princeton, NJ USA
4.Minist Nat Resources, Inst Oceanog 1, Qingdao, Peoples R China
第一作者单位中国科学院海洋研究所
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Wang, Yunhe,Yuan, Xiaojun,Ren, Yibin,et al. Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model[J]. GEOPHYSICAL RESEARCH LETTERS,2023,50(17):10.
APA Wang, Yunhe.,Yuan, Xiaojun.,Ren, Yibin.,Bushuk, Mitchell.,Shu, Qi.,...&Li, Xiaofeng.(2023).Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model.GEOPHYSICAL RESEARCH LETTERS,50(17),10.
MLA Wang, Yunhe,et al."Subseasonal Prediction of Regional Antarctic Sea Ice by a Deep Learning Model".GEOPHYSICAL RESEARCH LETTERS 50.17(2023):10.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, Yunhe]的文章
[Yuan, Xiaojun]的文章
[Ren, Yibin]的文章
百度学术
百度学术中相似的文章
[Wang, Yunhe]的文章
[Yuan, Xiaojun]的文章
[Ren, Yibin]的文章
必应学术
必应学术中相似的文章
[Wang, Yunhe]的文章
[Yuan, Xiaojun]的文章
[Ren, Yibin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。