IOCAS-IR  > 海洋环流与波动重点实验室
A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions
Zhou, Lu1,2,3; Zhang, Rong-Hua4,5
2023-03-10
发表期刊SCIENCE ADVANCES
ISSN2375-2548
卷号9期号:10页码:1
通讯作者Zhang, Rong-Hua([email protected])
摘要Large biases and uncertainties remain in real-time predictions of El Nino-Southern Oscillation (ENSO) using process-based dynamical models; recent advances in data-driven deep learning algorithms provide a promising mean to achieve superior skill in the tropical Pacific sea surface temperature (SST) modeling. Here, a specific selfattention-based neural network model is developed for ENSO predictions based on the much sought-after Transformer model, named 3D-Geoformer, which is used to predict three-dimensional (3D) upper-ocean temperature anomalies and wind stress anomalies. This purely data-driven and time-space attention-enhanced model achieves surprisingly high correlation skills for Nino 3.4 SST anomaly predictions made 18 months in advance and initiated beginning in boreal spring. Further, sensitivity experiments demonstrate that the 3DGeoformer model can depict the evolution of upper-ocean temperature and the coupled ocean-atmosphere dynamics following the Bjerknes feedback mechanism during ENSO cycles. Such successful realizations of the self-attention-based model in ENSO predictions indicate its great potential for multidimensional spatiotemporal modeling in geoscience.
DOI10.1126/sciadv.adf2827
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[42030410]; National Natural Science Foundation of China[LSL202202402]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB40000000]; Startup Foundation for Introducing Talent of NUIST
WOS研究方向Science & Technology - Other Topics
WOS类目Multidisciplinary Sciences
WOS记录号WOS:000960951400021
出版者AMER ASSOC ADVANCEMENT SCIENCE
WOS关键词2015-2016 EL-NINO ; MULTIMODEL ENSEMBLE ; TELECONNECTIONS ; PREDICTABILITY ; VARIABILITY ; FORECASTS ; EVOLUTION ; PROGRESS
引用统计
被引频次:48[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/182736
专题海洋环流与波动重点实验室
通讯作者Zhang, Rong-Hua
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
3.Univ Chinese Acad Sci, Beijing 10029, Peoples R China
4.Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Nanjing 210044, Peoples R China
5.Laoshan Lab, Qingdao 266237, Peoples R China
第一作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Zhou, Lu,Zhang, Rong-Hua. A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions[J]. SCIENCE ADVANCES,2023,9(10):1.
APA Zhou, Lu,&Zhang, Rong-Hua.(2023).A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions.SCIENCE ADVANCES,9(10),1.
MLA Zhou, Lu,et al."A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions".SCIENCE ADVANCES 9.10(2023):1.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Lu]的文章
[Zhang, Rong-Hua]的文章
百度学术
百度学术中相似的文章
[Zhou, Lu]的文章
[Zhang, Rong-Hua]的文章
必应学术
必应学术中相似的文章
[Zhou, Lu]的文章
[Zhang, Rong-Hua]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。