Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions | |
Zhou, Lu1,2,3; Zhang, Rong-Hua4,5 | |
2023-03-10 | |
发表期刊 | SCIENCE ADVANCES |
ISSN | 2375-2548 |
卷号 | 9期号:10页码:1 |
通讯作者 | Zhang, Rong-Hua([email protected]) |
摘要 | Large biases and uncertainties remain in real-time predictions of El Nino-Southern Oscillation (ENSO) using process-based dynamical models; recent advances in data-driven deep learning algorithms provide a promising mean to achieve superior skill in the tropical Pacific sea surface temperature (SST) modeling. Here, a specific selfattention-based neural network model is developed for ENSO predictions based on the much sought-after Transformer model, named 3D-Geoformer, which is used to predict three-dimensional (3D) upper-ocean temperature anomalies and wind stress anomalies. This purely data-driven and time-space attention-enhanced model achieves surprisingly high correlation skills for Nino 3.4 SST anomaly predictions made 18 months in advance and initiated beginning in boreal spring. Further, sensitivity experiments demonstrate that the 3DGeoformer model can depict the evolution of upper-ocean temperature and the coupled ocean-atmosphere dynamics following the Bjerknes feedback mechanism during ENSO cycles. Such successful realizations of the self-attention-based model in ENSO predictions indicate its great potential for multidimensional spatiotemporal modeling in geoscience. |
DOI | 10.1126/sciadv.adf2827 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[42030410]; National Natural Science Foundation of China[LSL202202402]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB40000000]; Startup Foundation for Introducing Talent of NUIST |
WOS研究方向 | Science & Technology - Other Topics |
WOS类目 | Multidisciplinary Sciences |
WOS记录号 | WOS:000960951400021 |
出版者 | AMER ASSOC ADVANCEMENT SCIENCE |
WOS关键词 | 2015-2016 EL-NINO ; MULTIMODEL ENSEMBLE ; TELECONNECTIONS ; PREDICTABILITY ; VARIABILITY ; FORECASTS ; EVOLUTION ; PROGRESS |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/182736 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Zhang, Rong-Hua |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China 3.Univ Chinese Acad Sci, Beijing 10029, Peoples R China 4.Nanjing Univ Informat Sci & Technol, Sch Marine Sci, Nanjing 210044, Peoples R China 5.Laoshan Lab, Qingdao 266237, Peoples R China |
第一作者单位 | 海洋环流与波动重点实验室 |
推荐引用方式 GB/T 7714 | Zhou, Lu,Zhang, Rong-Hua. A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions[J]. SCIENCE ADVANCES,2023,9(10):1. |
APA | Zhou, Lu,&Zhang, Rong-Hua.(2023).A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions.SCIENCE ADVANCES,9(10),1. |
MLA | Zhou, Lu,et al."A self-attention-based neural network for three-dimensional multivariate modeling and its skillful ENSO predictions".SCIENCE ADVANCES 9.10(2023):1. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
推荐该条目 |
保存到收藏夹 |
查看访问统计 |
导出为Endnote文件 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhou, Lu]的文章 |
[Zhang, Rong-Hua]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhou, Lu]的文章 |
[Zhang, Rong-Hua]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhou, Lu]的文章 |
[Zhang, Rong-Hua]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论