Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Estimation of nitrate concentration and its distribution in the northwestern Pacific Ocean by a deep neural network model | |
Wang, Lixin1,2; Xu, Zhenhua2,3,4,5,6; Gong, Xiang1; Zhang, Peiwen2,3,4; Hao, Zhanjiu2,3,4,5; You, Jia2,3,4,5; Zhao, Xianzhi1; Guo, Xinyu7 | |
2023-05-01 | |
发表期刊 | DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS |
ISSN | 0967-0637 |
卷号 | 195页码:11 |
通讯作者 | Xu, Zhenhua([email protected]) ; Gong, Xiang([email protected]) |
摘要 | As a fundamental nutrient for marine biogeochemical processes, the magnitude and spatial distribution of nitrate concentrations are insufficiently measured in the interior ocean. In the present study, a deep neural network (DNN) model was developed to estimate nitrate concentrations in the upper northwestern Pacific Ocean (NPO). This model takes the temperature and salinity profiles as the primary input variables. Since the subtropical and tropical regions are featured by different spatial patterns of nitrate concentrations, we separately trained the model to improve the prediction skill. The predictive results indicate that the DNN model performs well in depicting both spatial and seasonal variability of nitrate concentrations. The sensitivity experiments show that temperature is the dominant factor for the nitrate estimation, while salinity has a relatively small effect, but it cannot be ignored in improving the prediction accuracy. Furthermore, using the temperature and salinity data from World Ocean atlas (2018), we found our DNN model has a good generalization ability on nitrate estimation in NPO. This model can be applied to further studies on nitrate's spatiotemporal variability and mechanism around the global ocean. |
关键词 | Nitrate Spatial distribution Deep neural network Northwestern pacific ocean |
DOI | 10.1016/j.dsr.2023.104005 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences; National Nature Science Foundation of China-Shandong Joint Fund[XDA22050202]; National Nature Science Foundation of China-Shandong Joint Fund[U1906215]; National Nature Science Foundation of China-Shandong Joint Fund[XDB42000000]; National Natural Science Foundation of China[92058202]; Laoshan Laboratory[LSKJ202202502]; Key Deployment Project of Center for Ocean Mega Research of Science; Chinese Academy of Sciences[COMS2020Q07]; CAS; CSIRO[133244KYSB20190031] |
WOS研究方向 | Oceanography |
WOS类目 | Oceanography |
WOS记录号 | WOS:001029214300001 |
出版者 | PERGAMON-ELSEVIER SCIENCE LTD |
WOS关键词 | SEA-SURFACE NITRATE ; MIXED-LAYER ; THERMOCLINE ; TEMPERATURE ; NUTRIENTS ; FLUX |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/182656 |
专题 | 海洋环流与波动重点实验室 海洋生态与环境科学重点实验室 |
通讯作者 | Xu, Zhenhua; Gong, Xiang |
作者单位 | 1.Qingdao Univ Sci & Technol, Sch Math & Phys, Qingdao, Peoples R China 2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 3.Pilot Natl Lab Marine Sci & Technol, Qingdao, Peoples R China 4.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China 5.Univ Chinese Acad Sci, Coll Earth & Planetary Sci, Beijing, Peoples R China 6.Chinese Acad Sci, Inst Oceanol, CAS Engn Lab Marine Ranching, Qingdao, Peoples R China 7.Ehime Univ, Ctr Marine Environm Study, 2-5 Bunkyo cho, Matsuyama 7908577, Japan |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Wang, Lixin,Xu, Zhenhua,Gong, Xiang,et al. Estimation of nitrate concentration and its distribution in the northwestern Pacific Ocean by a deep neural network model[J]. DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS,2023,195:11. |
APA | Wang, Lixin.,Xu, Zhenhua.,Gong, Xiang.,Zhang, Peiwen.,Hao, Zhanjiu.,...&Guo, Xinyu.(2023).Estimation of nitrate concentration and its distribution in the northwestern Pacific Ocean by a deep neural network model.DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS,195,11. |
MLA | Wang, Lixin,et al."Estimation of nitrate concentration and its distribution in the northwestern Pacific Ocean by a deep neural network model".DEEP-SEA RESEARCH PART I-OCEANOGRAPHIC RESEARCH PAPERS 195(2023):11. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论