IOCAS-IR  > 海洋环流与波动重点实验室
Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model
Li, Xiaolong1,2; Yang, Yi1,2,3; Ishizaka, Joji4; Li, Xiaofeng1,2
2023-08-15
发表期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
卷号294页码:16
通讯作者Li, Xiaofeng([email protected])
摘要Based on a global matchup between satellite observations and high performance liquid chromatography (HPLC) measurements, we developed a deep-learning-based model (DL-PPCE model) for globally estimating concentrations of 17 different phytoplankton pigments. The model adopted a fusion architecture of residual and pyramid networks to achieve robust estimation performance. The model inputs include three different data types: essential ocean color parameters, satellite-derived environmental parameters, and the slope of above-surface remote-sensing reflectance (R-rs). We compared the model performances with various input parameters to determine the most effective inputs. The results showed that R-rs in the essential ocean color parameters and sea surface temperature (SST) in the environmental parameters were the most critical input parameters. The estimation of phytoplankton pigment concentrations was validated against HPLC data using the leave-one-out crossvalidation method. Except for three pigments, 19'-butanoyloxy-fucoxanthin, prasinoxanthin, and lutein, the estimated pigment concentrations and in-situ observations were strongly correlated for all other pigments (an average relative root-mean-square error of 0.59, R-2 >= 0.60, and regression slopes close to 1). In addition, a time series analysis was performed on the MODIS retrieved global pigment concentrations during 2003-2021 using the established DL-PPCE model to explore the relationship between the distribution of phytoplankton groups and El Nino in the western equatorial Pacific. Our findings revealed that the prokaryotes-dominated area extended eastward from180 degrees E to 150 degrees W during the 2015/2016 El Nino event. From 2003 to 2021, prokaryotic abundance was positively correlated with El Nino intensity ( R = 0.65, P << 0.01) but negatively correlated with the abundance of the entire phytoplankton community ( R = -0.53, P << 0.01). These results demonstrate that the DLPPCE model presents a novel approach for estimating the concentration of 17 pigments worldwide, and the estimated pigment concentrations are advantageous for analyzing the phytoplankton community dynamics on a large spatiotemporal scale.
关键词Phytoplankton pigments Remote sensing Deep learning Satellite Global Ocean Phytoplankton community El Nino
DOI10.1016/j.rse.2023.113628
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[42076200]; Joint Project of the National Natural Science Foundation of China-Shandong Province[U2006211]; CAS (Chinese Academy of Sciences) Program[YJKYYQ20200063]; CAS (Chinese Academy of Sciences) Program[Y9KY04101L]; Natural Science Foundation of Shandong Province[ZR2020MD083]; Key Research and Development Program of Shandong Province[2022CXPT020]; China Scholarship Fund[201904910027]
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001018440800001
出版者ELSEVIER SCIENCE INC
WOS关键词REMOTE-SENSING REFLECTANCE ; CHLOROPHYLL-A ; COMMUNITY STRUCTURE ; ABSORPTION-SPECTRA ; SIZE ; HPLC ; CLASSIFICATION ; ALGORITHMS ; CHEMTAX ; WATERS
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/182587
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao, Peoples R China
3.Univ Chinese Acad Sci, Coll Marine Sci, Beijing, Peoples R China
4.Nagoya Univ, Inst Space Earth Environm Res, Nagoya, Japan
第一作者单位中国科学院海洋研究所;  中国科学院海洋大科学研究中心
通讯作者单位中国科学院海洋研究所;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Li, Xiaolong,Yang, Yi,Ishizaka, Joji,et al. Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model[J]. REMOTE SENSING OF ENVIRONMENT,2023,294:16.
APA Li, Xiaolong,Yang, Yi,Ishizaka, Joji,&Li, Xiaofeng.(2023).Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model.REMOTE SENSING OF ENVIRONMENT,294,16.
MLA Li, Xiaolong,et al."Global estimation of phytoplankton pigment concentrations from satellite data using a deep-learning-based model".REMOTE SENSING OF ENVIRONMENT 294(2023):16.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Li, Xiaolong]的文章
[Yang, Yi]的文章
[Ishizaka, Joji]的文章
百度学术
百度学术中相似的文章
[Li, Xiaolong]的文章
[Yang, Yi]的文章
[Ishizaka, Joji]的文章
必应学术
必应学术中相似的文章
[Li, Xiaolong]的文章
[Yang, Yi]的文章
[Ishizaka, Joji]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。