IOCAS-IR  > 海洋环流与波动重点实验室
Hyperspectral Band Selection With Iterative Graph Autoencoder
Zhou, Yuan1; Yao, Qingren1; Huo, Shuwei1; Li, Xiaofeng2,3
2023
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号61页码:13
通讯作者Li, Xiaofeng([email protected])
摘要Hyperspectral band selection (BS) is an important task for hyperspectral image (HSI) processing, which aims to select a discriminative and low-redundant band subset. As a significant cue for BS, structure information describes the cross-band correlation, which brings the redundancy of HSI. Existing methods model structure information via manual rule-based graph construction. However, such a graph construction method fails to model complex and diverse structural relationships of HSI data. To address this problem, we propose a data-driven method, named iterative graph autoencoder for BS (IGAEBS). It adaptively captures structure information by a data-specific automatic construction process, rather than by a fixed empirical design. Specifically, we propose a new unsupervised pretext task to train graph convolution neural networks to extract HSI features. These features are used to construct a graph to represent the structural relationships among bands. To enhance the reliability of the graph, we further design an iterative graph improvement mechanism to progressively refine the structure representation. Using the derived graph, we partition the bands into several clusters and select a representative band from each cluster. During the selection process, both intracluster information and intercluster information are considered to improve the discriminativeness of band subset. Extensive experiments are conducted on three public datasets to validate the superiority of the proposed method compared to other state-of-the-art methods.
关键词Feature extraction Iterative methods Symmetric matrices Hyperspectral imaging Convolution Correlation Task analysis Graph autoencoder (GAE) graph representation hyperspectral band selection (BS) representativeness
DOI10.1109/TGRS.2023.3273776
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2020YFC1523204]; National Natural Science Foundation of China[62171320]; National Natural Science Foundation of China[U2006211]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000996488200003
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词IMAGE
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/182318
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Shandong, Peoples R China
3.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
通讯作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Zhou, Yuan,Yao, Qingren,Huo, Shuwei,et al. Hyperspectral Band Selection With Iterative Graph Autoencoder[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2023,61:13.
APA Zhou, Yuan,Yao, Qingren,Huo, Shuwei,&Li, Xiaofeng.(2023).Hyperspectral Band Selection With Iterative Graph Autoencoder.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,61,13.
MLA Zhou, Yuan,et al."Hyperspectral Band Selection With Iterative Graph Autoencoder".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 61(2023):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yuan]的文章
[Yao, Qingren]的文章
[Huo, Shuwei]的文章
百度学术
百度学术中相似的文章
[Zhou, Yuan]的文章
[Yao, Qingren]的文章
[Huo, Shuwei]的文章
必应学术
必应学术中相似的文章
[Zhou, Yuan]的文章
[Yao, Qingren]的文章
[Huo, Shuwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。