IOCAS-IR  > 海洋环流与波动重点实验室
Recovering Bathymetry From Satellite Altimetry-Derived Gravity by Fully Connected Deep Neural Network
Yang, Lei1,2,3; Liu, Min4; Liu, Na1; Guo, Jinyun5; Lin, Lina1; Zhang, Yuyuan1; Du, Xing1; Xu, Yongsheng2; Zhu, Chengcheng6; Wang, Yongkang7
2023
发表期刊IEEE GEOSCIENCE AND REMOTE SENSING LETTERS
ISSN1545-598X
卷号20页码:5
通讯作者Liu, Min([email protected])
摘要The topography of the seafloor is highly correlated with the local gravity through intrinsically nonlinear relationships across a particular wavelength band. The purpose of this study is to compare a fully connected deep neural network (FC-DNN) and a convolutional neural network (CNN) with the gravity-geological method (GGM) to determine whether deep learning can provide superior predictions of bathymetry. We include the short-wavelength gravity (SG) and geological models as training parameters, and assess the performance of different models and parameter combinations using various inputs. Compared with the CNN method, the FC-DNN with the SG as an input reduces the standard deviation (STD) of bathymetry differences from 118.6 m to about 73.5 m. The FC-DNN with SG reduces the STD of bathymetry differences by up to 13.3% compared with the conventional GGM. Furthermore, we demonstrate that the addition of geological information alongside the SG does not significantly enhance the accuracy. Power spectral density analysis suggests that the FC-DNN is superior for predicting wavelengths shorter than 6 km.
关键词Gravity Bathymetry Satellites Geology Altimetry Geologic measurements Sea measurements convolutional neural network (CNN) fully connected deep neural network (FC-DNN) gravity gravity-geological method satellite altimetry
DOI10.1109/LGRS.2023.3302992
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[41806214]; National Natural Science Foundation of China[42106232]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:001063563700007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
WOS关键词MODEL
引用统计
被引频次:3[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/181818
专题海洋环流与波动重点实验室
通讯作者Liu, Min
作者单位1.Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Shandong, Peoples R China
3.Univ Chinese Acad Sci, Beijing 100864, Peoples R China
4.91001 Unit, Beijing 100841, Peoples R China
5.Shandong Univ Sci & Technol, Coll Geodesy & Geomatics, Qingdao, Peoples R China
6.Shandong Jianzhu Univ, Sch Surveying & Geoinformat, Jinan 250101, Peoples R China
7.Natl Marine Environm Monitoring Ctr, Dalian 116023, Peoples R China
第一作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Yang, Lei,Liu, Min,Liu, Na,et al. Recovering Bathymetry From Satellite Altimetry-Derived Gravity by Fully Connected Deep Neural Network[J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,2023,20:5.
APA Yang, Lei.,Liu, Min.,Liu, Na.,Guo, Jinyun.,Lin, Lina.,...&Wang, Yongkang.(2023).Recovering Bathymetry From Satellite Altimetry-Derived Gravity by Fully Connected Deep Neural Network.IEEE GEOSCIENCE AND REMOTE SENSING LETTERS,20,5.
MLA Yang, Lei,et al."Recovering Bathymetry From Satellite Altimetry-Derived Gravity by Fully Connected Deep Neural Network".IEEE GEOSCIENCE AND REMOTE SENSING LETTERS 20(2023):5.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Yang, Lei]的文章
[Liu, Min]的文章
[Liu, Na]的文章
百度学术
百度学术中相似的文章
[Yang, Lei]的文章
[Liu, Min]的文章
[Liu, Na]的文章
必应学术
必应学术中相似的文章
[Yang, Lei]的文章
[Liu, Min]的文章
[Liu, Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。