Knowledge Management System Of Institute of Oceanology, Chinese Academy of Sciences
The seafloor heat flux driven by bottom water temperature variation in the Yellow and Bohai Seas | |
Yang, Guang-Bing1,2,3,4; Xia, Changshui1,2,3,4; Xiong, Xue-Jun1,2,3,4; Feng, Zhi-Tao5; Chen, Zhao6; Yang, Yang3,7; Ma, De-Jing8; Ju, Xia1,2,3,4; Zheng, Quanan9; Yuan, Yeli1,2,3,4 | |
2022-09-01 | |
发表期刊 | OCEAN MODELLING |
ISSN | 1463-5003 |
卷号 | 177页码:15 |
通讯作者 | Yang, Guang-Bing([email protected]) |
摘要 | The Yellow and Bohai Seas (YBS) are shallow marginal seas located at the temperate latitudes of the western North Pacific. The seasonal bottom water temperature variation in the YBS can be greater than 20 C and therefore generates significant seafloor heat flux, which significantly changes both the sediment temperature profile and heat content of the overlying water column. In this study, we investigated the seafloor heat flux driven by bottom water temperature variation in the YBS using a high-resolution numerical ocean model and a one-dimensional sediment temperature model. The results showed that seafloor heat flux in the area shallower than 50 m was on the order of 10 W/m2. The seafloor heat flux was larger than the lateral heat flux driven by circulation and ranked second only to surface net heat flux accounting for the most important forcing mechanism of ocean heat content variation in the coastal YBS. The accumulated seafloor heat flux during the sediment cooling/warming season could warm/cool the overlying water column by about 1 C in the coastal YBS where the depth is shallower than 30 m. The depth of sediment affected by seafloor heat flux (seasonal sediment temperature variation > 0.1 C) could be as deep as 10 m. The complex spatial-temporal distribution of seafloor heat flux generated a complex distribution of sediment temperature and sound speed, which may have an important effect on acoustic wave propagation in the YBS. |
关键词 | Seafloor heat flux Acoustic velocity Conductive heat flux Water temperature Yellow and Bohai Seas |
DOI | 10.1016/j.ocemod.2022.102073 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[41706038]; National Natural Science Foundation of China (NSFC)[41821004]; National Natural Science Foundation of China (NSFC)[42130406]; National Natural Science Foundation of China (NSFC)[41576027]; National Natural Science Foundation of China (NSFC)[41376038]; National Natural Science Foundation of China (NSFC)[40406009]; Shandong Provincial Natural Science Foundation, China[ZR2017QD005]; Basic Scientific Fund for National Public Research Institutes of China[2017Q01]; NSFC-Shandong Joint Fund for Marine Science Research Centers, China[U1406405]; NSFC-Shandong Joint Fund for Marine Science Research Centers, China[U1606405]; International Cooperation Project of Indo-Pacific Ocean Environment Variation and Air-Sea Interaction[GASI-03-IPOVAI-05]; National Programme on Global Change and Air-Sea Interaction[GASI-03-01-01-02]; National Programme on Global Change and Air-Sea Interaction[GASI-IPOVAI-01-05]; Public Science and Technology Research Funds Projects of Ocean[2009050240]; National Key Scientific Instrument and Equipment Development Projects[2012YQ12003908]; National Science and Technology Major Project[2016ZX05057015] |
WOS研究方向 | Meteorology & Atmospheric Sciences ; Oceanography |
WOS类目 | Meteorology & Atmospheric Sciences ; Oceanography |
WOS记录号 | WOS:000844672000004 |
出版者 | ELSEVIER SCI LTD |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/180913 |
专题 | 中国科学院海洋研究所 |
通讯作者 | Yang, Guang-Bing |
作者单位 | 1.Minist Nat Resources, Inst Oceanog 1, Qingdao 266061, Peoples R China 2.Minist Nat Resources, Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China 3.Pilot Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao 266237, Peoples R China 4.Shandong Key Lab Marine Sci & Numer Modeling, Qingdao 266061, Peoples R China 5.Minist Nat Resources, Natl Ocean Technol Ctr, Tianjin 300112, Peoples R China 6.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China 7.Minist Nat Resources, Inst Oceanog 1, Ctr Ocean & Climate Res, Qingdao 266061, Peoples R China 8.Minist Nat Resources, Inst Oceanog 1, Marine Data & Informat Ctr, Qingdao 266061, Peoples R China 9.Univ Maryland, Dept Atmospher & Ocean Sci, College Pk, MD 20742 USA |
推荐引用方式 GB/T 7714 | Yang, Guang-Bing,Xia, Changshui,Xiong, Xue-Jun,et al. The seafloor heat flux driven by bottom water temperature variation in the Yellow and Bohai Seas[J]. OCEAN MODELLING,2022,177:15. |
APA | Yang, Guang-Bing.,Xia, Changshui.,Xiong, Xue-Jun.,Feng, Zhi-Tao.,Chen, Zhao.,...&Yuan, Yeli.(2022).The seafloor heat flux driven by bottom water temperature variation in the Yellow and Bohai Seas.OCEAN MODELLING,177,15. |
MLA | Yang, Guang-Bing,et al."The seafloor heat flux driven by bottom water temperature variation in the Yellow and Bohai Seas".OCEAN MODELLING 177(2022):15. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论