IOCAS-IR  > 海洋地质与环境重点实验室
Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods
Ren, Lihui1,3; Tian, Ye1; Yang, Xiaoying1; Wang, Qi1,3; Wang, Leshan1; Geng, Xin1; Wang, Kaiqiang2; Du, Zengfeng4; Li, Ying1; Lin, Hong2
2023-01-30
发表期刊FOOD CHEMISTRY
ISSN0308-8146
卷号400页码:9
通讯作者Tian, Ye([email protected])
摘要There has been an increasing demand for the rapid verification of fish authenticity and the detection of adul-teration. In this work, we combined LIBS and Raman spectroscopy for the fish species identification for the first time. Two machine learning methods of SVM and CNN are used to establish the classification models based on the LIBS and Raman data obtained from 13 types of fish species. Data fusion strategies including low-level, mid-level and high-level fusions are used for the combination of LIBS and Raman data. It shows that all these data fusion strategies offer a significant improvement in fish classification compared with the individual LIBS or Raman data, and the CNN model works more powerfully than the SVM model. The low-level fusion CNN model provides a best classification accuracy of 98.2%, while the mid-level fusion involved with feature selection improves the computing efficiency and gains the interpretability of CNN.
关键词Fish species identification laser -induced breakdown spectroscopy (LIBS) Raman spectroscopy Machine learning convolutional neural network (CNN) Data fusion
DOI10.1016/j.foodchem.2022.134043
收录类别SCI
语种英语
资助项目National Key Research and Devel- opment Program of China[2019YFD0901701]
WOS研究方向Chemistry ; Food Science & Technology ; Nutrition & Dietetics
WOS类目Chemistry, Applied ; Food Science & Technology ; Nutrition & Dietetics
WOS记录号WOS:000858940600001
出版者ELSEVIER SCI LTD
引用统计
被引频次:41[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/180784
专题海洋地质与环境重点实验室
通讯作者Tian, Ye
作者单位1.Ocean Univ China, Coll Phys & Optoelect Engn, Qingdao 266100, Peoples R China
2.Ocean Univ China, Food Safety Lab, Qingdao 266003, Peoples R China
3.Chinese Acad Sci, Qingdao Inst BioEnergy & Bioproc Technol, Single Cell Ctr, Qingdao 266101, Peoples R China
4.Chinese Acad Sci, Key Lab Marine Geol & Environm, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Ren, Lihui,Tian, Ye,Yang, Xiaoying,et al. Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods[J]. FOOD CHEMISTRY,2023,400:9.
APA Ren, Lihui.,Tian, Ye.,Yang, Xiaoying.,Wang, Qi.,Wang, Leshan.,...&Lin, Hong.(2023).Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods.FOOD CHEMISTRY,400,9.
MLA Ren, Lihui,et al."Rapid identification of fish species by laser-induced breakdown spectroscopy and Raman spectroscopy coupled with machine learning methods".FOOD CHEMISTRY 400(2023):9.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S030881462202(4660KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Lihui]的文章
[Tian, Ye]的文章
[Yang, Xiaoying]的文章
百度学术
百度学术中相似的文章
[Ren, Lihui]的文章
[Tian, Ye]的文章
[Yang, Xiaoying]的文章
必应学术
必应学术中相似的文章
[Ren, Lihui]的文章
[Tian, Ye]的文章
[Yang, Xiaoying]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0308814622020052-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。