Intensified aridity over the Indo-Pacific Warm Pool controlled by ice-sheet expansion during the Last Glacial Maximum | |
Xiong, Zhifang1,2; Zhai, Bin3; Algeo, Thomas J.4,5; Lu, Zhengyao6; Li, Tiegang1,2; Meyer, Hanno7; Jiang, Fuqing2,8; Zhang, Peng9; Qin, Bingbin1; Gong, Xun10; Wang, Zhenyan8; Jia, Qi1 | |
2022-10-01 | |
发表期刊 | GLOBAL AND PLANETARY CHANGE |
ISSN | 0921-8181 |
卷号 | 217页码:15 |
通讯作者 | Li, Tiegang([email protected]) |
摘要 | The magnitude, direction and cause of precipitation changes across the Indo-Pacific Warm Pool (IPWP) during the Last Glacial Maximum (LGM) remain elusive. In particular, it is still inconclusive whether tropical or extra -tropical factors controlled such precipitation changes. Determining the spatio-temporal distribution of precipi-tation in the IPWP during the LGM is a valid strategy to address this issue, but the existing precipitation records are dominantly from maritime continents and marginal seas, with few data from pelagic oceans. In order to fill this gap, we analyzed the oxygen isotopic compositions of single Ethmodiscus rex diatom frustules (delta 18OE. rex) from a sediment core (WPD-03) consisting of laminated diatom mats (LDMs) in the eastern Philippine Sea (EPS). delta 18OE. rex was controlled mainly by sea-surface salinity variation and, thus, can reflect open-ocean precipitation changes across the IPWP. Our precipitation proxy records, in combination with existing published data, reveal spatial patterns of precipitation change that indicate overall drying across the IPWP during the LGM. Based on a comparison of paleoclimatic records with modeling results, we propose that extra-tropical factors (ice-sheet size) controlled precipitation variability in the IPWP during the LGM through a combination of zonal shifts of ENSO and meridional migration of the ITCZ. Strong aridity during the LGM prevented formation of a subsurface barrier layer and, hence, allowed accessing of sufficient nutrients to surface waters, stimulating blooms of E. rex and subsequent formation of LDMs in the IPWP. These findings suggest an important role for high-latitude climate in the tropical hydrological cycle during the LGM. |
关键词 | Tropical hydroclimate High-latitude forcing Sea-surface salinity Diatom blooms Model simulation Tropical West Pacific |
DOI | 10.1016/j.gloplacha.2022.103952 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China (NSFC)[41830539]; Evaluation and Effect of Paleoclimatic Evolution[GASI-04-QYQH-04]; Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM050203]; NSFC[41576051]; NSFC[U1606401]; Taishan Scholars Project Funding[ts20190963]; Basic Scientific Fund for National Public Research Institutes of China[2019S04]; Basic Scientific Fund for National Public Research Institutes of China[2017Y07]; Chinese Academy of Sciences[XDB42000000] |
WOS研究方向 | Physical Geography ; Geology |
WOS类目 | Geography, Physical ; Geosciences, Multidisciplinary |
WOS记录号 | WOS:000874531600001 |
出版者 | ELSEVIER |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/180546 |
专题 | 海洋地质与环境重点实验室 |
通讯作者 | Li, Tiegang |
作者单位 | 1.Minist Nat Resources, Inst Oceanog 1, Key Lab Marine Geol & Metallogeny, Qingdao 266061, Peoples R China 2.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Geol, Qingdao 266237, Peoples R China 3.Minist Nat Resources, Qingdao Inst Marine Geol, Key Lab Gas Hydrate, Qingdao 266071, Peoples R China 4.Univ Cincinnati, Dept Geol, Cincinnati, OH 45221 USA 5.China Univ Geosci, State Key Labs Biogeol & Environm Geol Geol Proc &, Wuhan 430074, Peoples R China 6.Lund Univ, Dept Phys Geog & Ecosyst Sci, Solvegatan 12, S-22362 Lund, Sweden 7.Alfred Wegener Inst Helmholtz Ctr Polar & Marine R, Telegrafenberg A45, D-14473 Potsdam, Germany 8.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Geol & Environm, Qingdao 266071, Peoples R China 9.Northwest Univ, Dept Geol, State Key Lab Continental Dynam, Xian 710069, Peoples R China 10.China Univ Geosci, Hubei Key Lab Marine Geol Resources, Wuhan 430074, Peoples R China |
推荐引用方式 GB/T 7714 | Xiong, Zhifang,Zhai, Bin,Algeo, Thomas J.,et al. Intensified aridity over the Indo-Pacific Warm Pool controlled by ice-sheet expansion during the Last Glacial Maximum[J]. GLOBAL AND PLANETARY CHANGE,2022,217:15. |
APA | Xiong, Zhifang.,Zhai, Bin.,Algeo, Thomas J..,Lu, Zhengyao.,Li, Tiegang.,...&Jia, Qi.(2022).Intensified aridity over the Indo-Pacific Warm Pool controlled by ice-sheet expansion during the Last Glacial Maximum.GLOBAL AND PLANETARY CHANGE,217,15. |
MLA | Xiong, Zhifang,et al."Intensified aridity over the Indo-Pacific Warm Pool controlled by ice-sheet expansion during the Last Glacial Maximum".GLOBAL AND PLANETARY CHANGE 217(2022):15. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
1-s2.0-S092181812200(5091KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论