IOCAS-IR  > 海洋环流与波动重点实验室
A Deep Learning Model for Green Algae Detection on SAR Images
Guo, Yuan1,2,3; Gao, Le1,2; Li, Xiaofeng1,2
2022
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号60页码:14
通讯作者Li, Xiaofeng([email protected])
摘要This study developed a textural-enhanced deep learning (DL) model based on the classic U-net framework for green algae detection in Sentinel-1 synthetic aperture radar (SAR) imagery. Four special modifications are made in the framework: texture-fused input dataset, texture concatenation to effectively use the texture information, weighted loss function to settle the imbalance of algae-seawater samples, and an attention module to facilitate model focus on the discriminative features efficiently. To build the proposed model, we collected 119 Sentinel-1 SAR images acquired in the Yellow Sea and manually labeled 8441 samples, among which 4421/1896/2124 were used as the training/validation/testing dataset, respectively. Experiments show that the classification achieves the mean intersection over union (mIOU) of 86.31%, outperforming previous DL methods. Furthermore, each modification is effective, and the weighted loss function plays the most critical role. Moreover, we monitored green tide in the Yellow Sea from 2019 to 2021 using the proposed model and analyzed the relationship between green tide interannual variation and two primary environmental factors: nitrate concentration and sea surface temperature (SST). The interannual variation is characterized via three crucial indexes: bloom duration, coverage area, and nearshore damage. The detection results reveal that the bloom duration is the longest (shortest) in 2019 (2020), corresponding to the biggest (smallest) coverage area in 2019 (2020). In addition, the nearshore damage is the heaviest (lightest) in 2021 (2020). We also found that the interannual variation of green tide scales is partly related to the available nitrate concentration and SST variation in algae-distributed regions.
关键词Green products Algae Radar polarimetry Tides Ocean temperature Feature extraction Sea surface Deep learning (DL) green algae Sentinel-1 synthetic aperture radar (SAR) image Yellow Sea
DOI10.1109/TGRS.2022.3215895
收录类别SCI
语种英语
资助项目Major Project of the 14th Five-Year Plan of Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM050301-2]; National Natural Science Foundation of China-Shandong Province[U2006211]; Major Projects of the National Natural Science Foundation of China[42090044]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42000000]; Major Scientific and Technological Innovation Projects in Shandong Province[2019JZZY010102]; Major Scientific and Technological Innovation Projects in Shandong Province[Y9KY04101L]; Major Scientific and Technological Innovation Projects in Shandong Province[COMS2019R02]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000882005800007
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/180323
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
3.Univ Chinese Acad Sci, Coll Marine Sci, Beijing 100049, Peoples R China
第一作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
通讯作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Guo, Yuan,Gao, Le,Li, Xiaofeng. A Deep Learning Model for Green Algae Detection on SAR Images[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:14.
APA Guo, Yuan,Gao, Le,&Li, Xiaofeng.(2022).A Deep Learning Model for Green Algae Detection on SAR Images.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,14.
MLA Guo, Yuan,et al."A Deep Learning Model for Green Algae Detection on SAR Images".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Guo, Yuan]的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
百度学术
百度学术中相似的文章
[Guo, Yuan]的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
必应学术
必应学术中相似的文章
[Guo, Yuan]的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。