IOCAS-IR  > 海洋环流与波动重点实验室
Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager
Zhou, Yuan1; Chen, Keran1; Li, Xiaofeng2
2022
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号60页码:17
通讯作者Li, Xiaofeng([email protected])
摘要Sea fog significantly threatens the safety of maritime activities. This article develops a sea fog detection dataset (SFDD) and a dual-branch sea fog detection network (DB-SFNet). We investigate all the observed sea fog events in the Yellow Sea and the Bohai Sea (118.1 degrees E-128.1 degrees E, 29.5 degrees N-43.8 degrees N) from 2010 to 2020 and collect the sea fog images for each event from the Geostationary Ocean Color Imager (GOCI) to comprise the dataset SFDD. The location of the sea fog in each image in SFDD is accurately marked. The proposed dataset is characterized by a long-time span, a large number of samples, and accurate labeling, which can substantially improve the robustness of various sea fog detection models. Furthermore, this article proposes a DB-SFNet to achieve accurate and holistic sea fog detection. The proposed DB-SFNet is composed of a knowledge extraction module and a dual-branch optional encoding decoding module. The two modules jointly extract discriminative features from both visual and statistical domains. Experiments show promising sea fog detection results with an F1-score of 0.77 and a critical success index of 0.63. Compared with existing advanced deep learning networks, DB-SFNet is superior in detection performance and stability, particularly in the mixed cloud and fog areas.
关键词Satellites Oceans Remote sensing Feature extraction Deep learning Color Annotations Deep learning satellite imagery sea fog detection semantic segmentation
DOI10.1109/TGRS.2022.3196177
收录类别SCI
语种英语
资助项目Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM050301-2]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42000000]; National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[62171320]; National Natural Science Foundation of China[42090044]; Chinese Academy of Science Program[Y9KY04101L]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000843314100012
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:12[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179923
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
通讯作者单位中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Zhou, Yuan,Chen, Keran,Li, Xiaofeng. Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:17.
APA Zhou, Yuan,Chen, Keran,&Li, Xiaofeng.(2022).Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,17.
MLA Zhou, Yuan,et al."Dual-Branch Neural Network for Sea Fog Detection in Geostationary Ocean Color Imager".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):17.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yuan]的文章
[Chen, Keran]的文章
[Li, Xiaofeng]的文章
百度学术
百度学术中相似的文章
[Zhou, Yuan]的文章
[Chen, Keran]的文章
[Li, Xiaofeng]的文章
必应学术
必应学术中相似的文章
[Zhou, Yuan]的文章
[Chen, Keran]的文章
[Li, Xiaofeng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。