IOCAS-IR
Joint Frequency-Spatial Domain Network for Remote Sensing Optical Image Change Detection
Zhou, Yuan1; Feng, Yanjie1; Huo, Shuwei1; Li, Xiaofeng2
2022
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号60页码:14
通讯作者Li, Xiaofeng([email protected])
摘要Change detection for remote sensing images involves detecting regional surface changes of interest between two images taken of the same geographical area but at different times. In image processing, the spatial domain uses grayscale values to describe an image. The frequency is directly related to the spatial change rate, so the frequency domain can be intuitively associated with patterns of intensity variations in the image. These two domains provide different perspectives for image interpretation. Most existing deep-learning-based methods formulate change detection as a pixel-wise binary classification problem and utilize various strategies to extract information in the spatial domain. However, they rarely pay attention to the rich information in the frequency domain. To address this problem, we propose an end-to-end joint frequency-spatial domain network (JFSDNet) to implement remote sensing optical image change detection. Specifically, we introduce frequency information into the change detection to supplement the loss of image details caused by downsampling. In addition, we employ a frequency selection module to adaptively discriminate and choose frequency clues by reducing the complexity of the frequency features. The JFSDNet is applied to two publicly available datasets: the change-detection dataset (CDD) dataset and the LEarning VIsion and Remote sensing Change Detection (LEVIR-CD) dataset. Compared with other methods, both visual interpretation and quantitative assessment confirmed that our proposed method achieved a favorable performance.
关键词Feature extraction Frequency-domain analysis Remote sensing Optical sensors Optical imaging Frequency domain analysis Optical fiber networks Change detection deep learning frequency domain neural network optical image
DOI10.1109/TGRS.2022.3196040
收录类别SCI
语种英语
资助项目Marine S&T Fund of Shandong Province for Pilot National Laboratory for Marine Science and Technology (Qingdao)[2022QNLM050301-2]; National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[62171320]; National Key Research and Development Program of China[2020YFC1523200]; Major Projects of the National Natural Science Foundation of China[42090044]; Chinese Academy of Science Program[Y9KY04101L]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000843314100026
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179914
专题中国科学院海洋研究所
通讯作者Li, Xiaofeng
作者单位1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Shandong, Peoples R China
通讯作者单位中国科学院海洋研究所
推荐引用方式
GB/T 7714
Zhou, Yuan,Feng, Yanjie,Huo, Shuwei,et al. Joint Frequency-Spatial Domain Network for Remote Sensing Optical Image Change Detection[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:14.
APA Zhou, Yuan,Feng, Yanjie,Huo, Shuwei,&Li, Xiaofeng.(2022).Joint Frequency-Spatial Domain Network for Remote Sensing Optical Image Change Detection.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,14.
MLA Zhou, Yuan,et al."Joint Frequency-Spatial Domain Network for Remote Sensing Optical Image Change Detection".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):14.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou, Yuan]的文章
[Feng, Yanjie]的文章
[Huo, Shuwei]的文章
百度学术
百度学术中相似的文章
[Zhou, Yuan]的文章
[Feng, Yanjie]的文章
[Huo, Shuwei]的文章
必应学术
必应学术中相似的文章
[Zhou, Yuan]的文章
[Feng, Yanjie]的文章
[Huo, Shuwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。