IOCAS-IR  > 海洋环流与波动重点实验室
Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method
Feng, Zhijie1; Hu, Po2,3,4; Li, Shuiqing2,3,4; Mo, Dongxue2,3
2022-06-01
发表期刊JOURNAL OF MARINE SCIENCE AND ENGINEERING
卷号10期号:6页码:20
通讯作者Hu, Po([email protected])
摘要Accurate wave prediction can help avoid disasters. In this study, the significant wave height (SWH) prediction performances of the recurrent neural network (RNN), long short-term memory network (LSTM), and gated recurrent unit network (GRU) were compared. The 10 m u-component of wind (U10), 10 m v-component of wind (V10), and SWH of the previous 24 h were used as input parameters to predict the SWHs of the future 1, 3, 6, 12, and 24 h. The SWH prediction model was established at three different sites located in the Bohai Sea, the East China Sea, and the South China Sea, separately. The experimental results show that the performance of LSTM and GRU networks based on the gating mechanism was better than that of traditional RNNs, and the performances of the LSTM and GRU networks were comparable. The EMD method was found to be useful in the improvement of the LSTM network to forecast the significant wave heights of 12 and 24 h.
关键词wave height recurrent neural network long short-term memory network GRU EMD
DOI10.3390/jmse10060836
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences[XDA19060202]; National Natural Science Foundation of China[42076214]; National Natural Science Foundation of China[42006027]; National Natural Science Foundation of China[U1806227]
WOS研究方向Engineering ; Oceanography
WOS类目Engineering, Marine ; Engineering, Ocean ; Oceanography
WOS记录号WOS:000816622700001
出版者MDPI
引用统计
被引频次:31[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179690
专题海洋环流与波动重点实验室
通讯作者Hu, Po
作者单位1.Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266580, Peoples R China
2.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Nanhai Rd, Qingdao 266071, Peoples R China
3.Pilot Natl Lab Marine Sci & Technol Qingdao, Lab Ocean Dynam & Climate, Wenhai Rd 1, Qingdao 266237, Peoples R China
4.Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing 100049, Peoples R China
通讯作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Feng, Zhijie,Hu, Po,Li, Shuiqing,et al. Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method[J]. JOURNAL OF MARINE SCIENCE AND ENGINEERING,2022,10(6):20.
APA Feng, Zhijie,Hu, Po,Li, Shuiqing,&Mo, Dongxue.(2022).Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method.JOURNAL OF MARINE SCIENCE AND ENGINEERING,10(6),20.
MLA Feng, Zhijie,et al."Prediction of Significant Wave Height in Offshore China Based on the Machine Learning Method".JOURNAL OF MARINE SCIENCE AND ENGINEERING 10.6(2022):20.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Feng, Zhijie]的文章
[Hu, Po]的文章
[Li, Shuiqing]的文章
百度学术
百度学术中相似的文章
[Feng, Zhijie]的文章
[Hu, Po]的文章
[Li, Shuiqing]的文章
必应学术
必应学术中相似的文章
[Feng, Zhijie]的文章
[Hu, Po]的文章
[Li, Shuiqing]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。