IOCAS-IR  > 实验海洋生物学重点实验室
Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system
Chen, Fudi1,2,3; Sun, Ming1,2,3; Du, Yishuai1,2; Xu, Jianping1,2; Zhou, Li1,2; Qiu, Tianlong1,2; Sun, Jianming1,2
2022-06-22
发表期刊AQUACULTURE RESEARCH
ISSN1355-557X
页码13
通讯作者Sun, Jianming([email protected])
摘要Precise feeding in the recirculating aquaculture mode is a critical scientific problem that urgently needs a solution. This study aimed to develop an intelligent feeding technique in a recirculating aquaculture system for rearing Litopenaeus vannamei. The core of the intelligent feeding technique is the shrimp biomass prediction model. Accurate prediction of shrimp biomass could determine the appropriate feeding amount and ensure stable water quality. The data-driven prediction model was developed based on water quality indicators and aquaculture management data collected during shrimp rearing. Multiple linear regression, artificial neural networks and a support vector machine (SVM) were introduced to develop the shrimp biomass predicting model. Results showed that the SVM model gave the lowest root mean square error (0.6500), mean absolute error (0.4368) and mean absolute percentage error (3.70%), as well as the highest accuracy (90.91%). By analysing the predictive ability of the machine learning models, it was determined that the SVM model was the optimal model for predicting biomass. The intelligent feeding machine can apply the optimal model to calculate the shrimp biomass and determine the appropriate feeding amount by reading the sensors in real time.
关键词Litopenaeus vannamei precise feeding predicting model shrimp biomass
DOI10.1111/are.15938
收录类别SCI
语种英语
资助项目China Postdoctoral Science Foundation[2021M693212]; Ministry of Science and Technology of the People's Republic of China[2017YFE0118300]; Ministry of Science and Technology of the People's Republic of China[2019YFD0900502]; Ministry of Science and Technology of the People's Republic of China[2019YFD0900800]
WOS研究方向Fisheries
WOS类目Fisheries
WOS记录号WOS:000814051300001
出版者WILEY
引用统计
被引频次:7[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179605
专题实验海洋生物学重点实验室
通讯作者Sun, Jianming
作者单位1.Chinese Acad Sci, Ctr Ocean Megasci, Inst Oceanol, CAS & Shandong Prov Key Lab Expt Marine Biol, Qingdao 266071, Peoples R China
2.Qingdao Natl Lab Marine Sci & Technol, Lab Marine Biol & Biotechnol, Qingdao, Peoples R China
3.Liaoning Ocean & Fisheries Sci Res Inst, Liaoning Prov Key Lab Marine Biol Resources & Eco, Dalian Key Lab Conservat Fishery Resources, Dalian, Peoples R China
第一作者单位中国科学院海洋大科学研究中心
通讯作者单位中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Chen, Fudi,Sun, Ming,Du, Yishuai,et al. Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system[J]. AQUACULTURE RESEARCH,2022:13.
APA Chen, Fudi.,Sun, Ming.,Du, Yishuai.,Xu, Jianping.,Zhou, Li.,...&Sun, Jianming.(2022).Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system.AQUACULTURE RESEARCH,13.
MLA Chen, Fudi,et al."Intelligent feeding technique based on predicting shrimp growth in recirculating aquaculture system".AQUACULTURE RESEARCH (2022):13.
条目包含的文件
条目无相关文件。
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Chen, Fudi]的文章
[Sun, Ming]的文章
[Du, Yishuai]的文章
百度学术
百度学术中相似的文章
[Chen, Fudi]的文章
[Sun, Ming]的文章
[Du, Yishuai]的文章
必应学术
必应学术中相似的文章
[Chen, Fudi]的文章
[Sun, Ming]的文章
[Du, Yishuai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。