Institutional Repository of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS
Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening | |
Wang, Peng1,3,4; Li, Changyang1,2,3,4; Zhang, Dun1,3,4 | |
2022-12-01 | |
发表期刊 | JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY |
ISSN | 1005-0302 |
卷号 | 129页码:40-69 |
通讯作者 | Wang, Peng([email protected]) |
摘要 | Inspired by the lotus leaf effect, non-wetting artificial superhydrophobic surfaces demonstrate an enormous potential in numerous fields. However, limited by poor stability and durability, superhydrophobic surfaces are rarely available for practical applications. In this review, based on the wettability mechanisms and failure modes of superhydrophobic surfaces, it is proposed that the construction of highly stable superhydrophobic materials can be approached from four aspects, including structural design, chemical bonding, interfacial-strengthening of hydrophobic materials and substrates, and self-healing. We introduced in detail the design ideas, strengthening approaches, and characterization tools of highly stable superhydrophobic materials from the perspective of multi-strategy design and strengthening, and provided corresponding insights. Eventually, the development, current status, and prospects of highly stable and multifunctional superhydrophobic materials were also presented in detail. Recent advances and development prospects of durable superhydrophobic materials were summarized and discussed in this review, providing certain insights and design guidelines for the fabrication of stable superhydrophobic materials. ?? 2022 Published by Elsevier Ltd on behalf of The editorial office of Journal of Materials Science & Technology. |
关键词 | Superhydrophobicity Stability Durability Strengthening |
DOI | 10.1016/j.jmst.2022.01.045 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[41922040] |
WOS研究方向 | Materials Science ; Metallurgy & Metallurgical Engineering |
WOS类目 | Materials Science, Multidisciplinary ; Metallurgy & Metallurgical Engineering |
WOS记录号 | WOS:000810915800004 |
出版者 | JOURNAL MATER SCI TECHNOL |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/179507 |
专题 | 海洋环境腐蚀与生物污损重点实验室 |
通讯作者 | Wang, Peng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao 266071, Peoples R China 2.Univ Chinese Acad Sci, Beijing 100039, Peoples R China 3.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China 4.Pilot Natl Lab Marine Sci & Technol, Open Studio Marine Corros & Protect, Qingdao 266237, Peoples R China |
第一作者单位 | 中国科学院海洋研究所; 中国科学院海洋大科学研究中心 |
通讯作者单位 | 中国科学院海洋研究所; 中国科学院海洋大科学研究中心 |
推荐引用方式 GB/T 7714 | Wang, Peng,Li, Changyang,Zhang, Dun. Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening[J]. JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,2022,129:40-69. |
APA | Wang, Peng,Li, Changyang,&Zhang, Dun.(2022).Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening.JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY,129,40-69. |
MLA | Wang, Peng,et al."Recent advances in chemical durability and mechanical stability of superhydrophobic materials: Multi-strategy design and strengthening".JOURNAL OF MATERIALS SCIENCE & TECHNOLOGY 129(2022):40-69. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
1-s2.0-S100503022200(13401KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论