IOCAS-IR  > 海洋环流与波动重点实验室
A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season
Ren, Yibin1,2; Li, Xiaofeng1,2; Zhang, Wenhao1,2
2022
发表期刊IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
ISSN0196-2892
卷号60页码:19
通讯作者Li, Xiaofeng([email protected])
摘要This study proposes a purely data-driven model for the weekly prediction of daily sea ice concentration (SIC) of the pan-Arctic (90 N, 45 N, 180 E, 180 W) during the melting season. The model, SICNet, adopts an encoder-decoder framework with fully convolutional networks (FCNs) and can predict the SIC (covering 320 x 224 grids, each with a resolution of 25 km) one-week lead with high accuracy. We design a temporal-spatial attention module (TSAM) to help SICNet capture spatiotemporal dependencies from SIC sequences. The satellite-derived SIC data of 33 years (1988-2020) from the National Snow and Ice Data Center (NSIDC) are employed to train and test the model, 1988-2015 for training, and 2016-2020 for testing. SICNet achieves the mean absolute error (MAE) of 2.67%, the mean absolute percentage error (MAPE) of 8.67%, and the Nash-Sutcliffe efficiency (NSE) of 0.9784 in weekly predicting of SIC during the melting season. SICNet achieves better performance than existing deep-learning-based models. The TSAM reduced the MAE from 2.73% to 2.67%. We evaluate the model's performance by recursively predicting, from seven- to 28-day leads. We employ the binary accuracy (BACC) metric to measure the accuracy of the predicted sea ice extent (SIE) and compare SICNet with the anomaly persistence (Persist). SICNet shows better performance than Persist with an average BACC on the 28th day of 2016-2019 over 90% (90.17%). For the 28-day lead predictions of three extreme minimum SIE in September 2007, 2012, and 2020, SICNet outperforms Persist with an average improvement of 1.84% in BACC and 0.16 milkm(2) in the SIE error.
关键词Deep fully convolutional networks (FCNs) recursively predicting satellite-derived sea ice concentration (SIC) SIC prediction temporal-spatial attention
DOI10.1109/TGRS.2022.3177600
收录类别SCI
语种英语
资助项目Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42040401]; Key Research and Development Project of Shandong Province[2019JZZY010102]; Key Deployment Project of Centre for Ocean Mega-Science through the CAS Programs[COMS2019R02 Y9KY04101L]; China Postdoctoral Science Foundation[2019M662452]; National Natural Science Foundation of China[U2006211]
WOS研究方向Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000809416400026
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:31[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/179155
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
第一作者单位海洋环流与波动重点实验室
通讯作者单位海洋环流与波动重点实验室
推荐引用方式
GB/T 7714
Ren, Yibin,Li, Xiaofeng,Zhang, Wenhao. A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:19.
APA Ren, Yibin,Li, Xiaofeng,&Zhang, Wenhao.(2022).A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,19.
MLA Ren, Yibin,et al."A Data-Driven Deep Learning Model for Weekly Sea Ice Concentration Prediction of the Pan-Arctic During the Melting Season".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):19.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
pdf_0047f559d19a17e7(22032KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Ren, Yibin]的文章
[Li, Xiaofeng]的文章
[Zhang, Wenhao]的文章
百度学术
百度学术中相似的文章
[Ren, Yibin]的文章
[Li, Xiaofeng]的文章
[Zhang, Wenhao]的文章
必应学术
必应学术中相似的文章
[Ren, Yibin]的文章
[Li, Xiaofeng]的文章
[Zhang, Wenhao]的文章
相关权益政策
暂无数据
收藏/分享
文件名: pdf_0047f559d19a17e73dd499bc47a14f2d.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。