Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery | |
Gao, Le1,2; Li, Xiaofeng1,2; Kong, Fanzhou2,3; Yu, Rencheng2,3; Guo, Yuan1,2; Ren, Yibin1,2 | |
2022 | |
发表期刊 | IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING |
ISSN | 1939-1404 |
卷号 | 15页码:2782-2796 |
通讯作者 | Li, Xiaofeng([email protected]) |
摘要 | This article developed a scalable deep-learning model, the AlgaeNet model, for floating Ulva prolifera (U. prolifera) detection in moderate resolution imaging spectroradiometer (MODIS) and synthetic aperture radar (SAR) images. We labeled 1055/4071 pairs of samples, among which 70%/30% were used for training/validation. As a result, the model reached an accuracy of 97.03%/99.83% and a mean intersection over union of 48.57%/88.43% for the MODIS/SAR images. The model was designed based on the classic U-Net model with two tailored modifications. First, the physics information input was a multichannel multisource remote sensing data. Second, a new loss function was developed to resolve the class-unbalanced samples (algae and seawater) and improve model performance. In addition, this model is expandable to process images from optical sensors (e.g., MODIS/GOCI/Landsat) and SAR (e.g., Sentinel-1/GF-3/Radarsat-1 or 2), reducing the potential biases due to the selection of extraction thresholds during the traditional threshold-based segmentation. We process satellite images containing U. prolifera in the Yellow Sea and draw two conclusions. First, adding the 10-m high-resolution SAR imagery shows a 63.66% increase in algae detection based on the 250-m resolution MODIS image alone. Second, we define a floating and submerged ratio number (FS ratio) based on the floating and submerged parts of U. prolifera detected by SAR and MODIS. A research vessel measurement confirms the FS ratio to be a good indicator for representing different life phases of U. prolifera. |
关键词 | Algae MODIS Synthetic aperture radar Optical sensors Optical imaging Marine vehicles Spatial resolution Deep learning (DL) green algae detection satellite remote sensing |
DOI | 10.1109/JSTARS.2022.3162387 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[42090044]; Major Scientific and Technological Innovation Projects in Shandong Province[2019JZZY010102]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42000000]; Key Project of the Center for Ocean Mega-Science[COMS2019R02]; Key Project of the Center for Ocean Mega-Science[Y9KY04101L]; Zhejiang Provincial Natural Science Foundation of China[LR21D060002]; CAS[Y9KY04101L] |
WOS研究方向 | Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000784198000004 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/178748 |
专题 | 海洋环流与波动重点实验室 海洋生态与环境科学重点实验室 |
通讯作者 | Li, Xiaofeng |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China 2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China 3.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao 266071, Peoples R China |
第一作者单位 | 海洋环流与波动重点实验室; 中国科学院海洋大科学研究中心 |
通讯作者单位 | 海洋环流与波动重点实验室; 中国科学院海洋大科学研究中心 |
推荐引用方式 GB/T 7714 | Gao, Le,Li, Xiaofeng,Kong, Fanzhou,et al. AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2022,15:2782-2796. |
APA | Gao, Le,Li, Xiaofeng,Kong, Fanzhou,Yu, Rencheng,Guo, Yuan,&Ren, Yibin.(2022).AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15,2782-2796. |
MLA | Gao, Le,et al."AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022):2782-2796. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
AlgaeNet__A_Deep_Lea(8280KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论