IOCAS-IR  > 海洋环流与波动重点实验室
AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery
Gao, Le1,2; Li, Xiaofeng1,2; Kong, Fanzhou2,3; Yu, Rencheng2,3; Guo, Yuan1,2; Ren, Yibin1,2
2022
发表期刊IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING
ISSN1939-1404
卷号15页码:2782-2796
通讯作者Li, Xiaofeng([email protected])
摘要This article developed a scalable deep-learning model, the AlgaeNet model, for floating Ulva prolifera (U. prolifera) detection in moderate resolution imaging spectroradiometer (MODIS) and synthetic aperture radar (SAR) images. We labeled 1055/4071 pairs of samples, among which 70%/30% were used for training/validation. As a result, the model reached an accuracy of 97.03%/99.83% and a mean intersection over union of 48.57%/88.43% for the MODIS/SAR images. The model was designed based on the classic U-Net model with two tailored modifications. First, the physics information input was a multichannel multisource remote sensing data. Second, a new loss function was developed to resolve the class-unbalanced samples (algae and seawater) and improve model performance. In addition, this model is expandable to process images from optical sensors (e.g., MODIS/GOCI/Landsat) and SAR (e.g., Sentinel-1/GF-3/Radarsat-1 or 2), reducing the potential biases due to the selection of extraction thresholds during the traditional threshold-based segmentation. We process satellite images containing U. prolifera in the Yellow Sea and draw two conclusions. First, adding the 10-m high-resolution SAR imagery shows a 63.66% increase in algae detection based on the 250-m resolution MODIS image alone. Second, we define a floating and submerged ratio number (FS ratio) based on the floating and submerged parts of U. prolifera detected by SAR and MODIS. A research vessel measurement confirms the FS ratio to be a good indicator for representing different life phases of U. prolifera.
关键词Algae MODIS Synthetic aperture radar Optical sensors Optical imaging Marine vehicles Spatial resolution Deep learning (DL) green algae detection satellite remote sensing
DOI10.1109/JSTARS.2022.3162387
收录类别SCI
语种英语
资助项目National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[42090044]; Major Scientific and Technological Innovation Projects in Shandong Province[2019JZZY010102]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDA19060101]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42000000]; Key Project of the Center for Ocean Mega-Science[COMS2019R02]; Key Project of the Center for Ocean Mega-Science[Y9KY04101L]; Zhejiang Provincial Natural Science Foundation of China[LR21D060002]; CAS[Y9KY04101L]
WOS研究方向Engineering ; Physical Geography ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Geography, Physical ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000784198000004
出版者IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC
引用统计
被引频次:27[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/178748
专题海洋环流与波动重点实验室
海洋生态与环境科学重点实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, Qingdao 266071, Peoples R China
3.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Ecol & Environm Sci, Qingdao 266071, Peoples R China
第一作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
通讯作者单位海洋环流与波动重点实验室;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Gao, Le,Li, Xiaofeng,Kong, Fanzhou,et al. AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery[J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,2022,15:2782-2796.
APA Gao, Le,Li, Xiaofeng,Kong, Fanzhou,Yu, Rencheng,Guo, Yuan,&Ren, Yibin.(2022).AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery.IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING,15,2782-2796.
MLA Gao, Le,et al."AlgaeNet: A Deep-Learning Framework to Detect Floating Green Algae From Optical and SAR Imagery".IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING 15(2022):2782-2796.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
AlgaeNet__A_Deep_Lea(8280KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
[Kong, Fanzhou]的文章
百度学术
百度学术中相似的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
[Kong, Fanzhou]的文章
必应学术
必应学术中相似的文章
[Gao, Le]的文章
[Li, Xiaofeng]的文章
[Kong, Fanzhou]的文章
相关权益政策
暂无数据
收藏/分享
文件名: AlgaeNet__A_Deep_Learning_Framework_to_Detect_Floating_Green_Algae_From_Optical_and_SAR_Imagery.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。