Institutional Repository of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS
Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings | |
Zhou, Ziyang1,2,3; Pourhashem, Sepideh1,3,4; Wang, Zhengquan1,2,3; Duan, Jizhou1,3,4; Zhang, Ruiyong1,3,4; Hou, Baorong1,3,4 | |
2022-07-01 | |
发表期刊 | CHEMICAL ENGINEERING JOURNAL |
ISSN | 1385-8947 |
卷号 | 439页码:13 |
通讯作者 | Duan, Jizhou([email protected]) |
摘要 | In this research, the amino-silane functionalized ZnO quantum dots (F-ZnO QDs), graphene oxide (F-GO), and their nanohybrids (F-GO@ZnO QDs) are used as effective nanofillers to improve the anti-corrosion and antifouling properties of waterborne epoxy coatings. The synthesized nanomaterials before and after silane functionalization are characterized by X-ray diffraction, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and transmission electron microscopy. Then, the nanocomposite waterborne epoxy coatings loaded with 0.1 wt% F-ZnO QDs, F-GO, and F-GO@ZnO QDs are prepared through solution mixing method. The effects of different nanofillers on the surface roughness, water contact angle, pull-off adhesion strength, fracture surface, and corrosion resistance of the nanocomposite coatings are considered. The results reveal that the uniformly dispersed F-GO@ZnO QDs in the fracture surface of the coating could provide the highest barrier and corrosion resistance on the steel substrates. Meanwhile, the nanocomposite coatings have higher water contact angle and higher adhesion strength to the substrates. The anti-bacterial and anti-fouling properties of the nanocomposite coatings have also been confirmed. The multifunctional performance of the epoxy/F-GO@ZnO QDs is assigned to the synergy effect between the GO, ZnO QDs, and amino-silane; exhibiting the importance of the nanohybrids to combine the advantages of different nanomaterials in one coating system. |
关键词 | Waterborne epoxy coating Graphene oxide ZnO quantum dots Nanohybrids Anti-corrosion and anti-fouling properties |
DOI | 10.1016/j.cej.2022.135765 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | CAS-VPST Silk Road Science Fund[133137KYSB20200034]; Applied Basic Research Programs of Qingdao[E1KY12106N]; [2021 (133137KYSB20200034)] |
WOS研究方向 | Engineering |
WOS类目 | Engineering, Environmental ; Engineering, Chemical |
WOS记录号 | WOS:000783193800003 |
出版者 | ELSEVIER SCIENCE SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/178733 |
专题 | 海洋环境腐蚀与生物污损重点实验室 |
通讯作者 | Duan, Jizhou |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, 7 Nanhai Rd, Qingdao 266071, Peoples R China 2.Univ Chinese Acad Sci, 19 Jia Yuquan Rd, Beijing 100049, Peoples R China 3.Pilot Natl Lab Marine Sci & Technol Qingdao, Open Studio Marine Corros & Protect, 1 Wenhai Rd, Qingdao 266237, Peoples R China 4.Chinese Acad Sci, Ctr Ocean Mega Sci, 7 Nanhai Rd, Qingdao 266071, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Zhou, Ziyang,Pourhashem, Sepideh,Wang, Zhengquan,et al. Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings[J]. CHEMICAL ENGINEERING JOURNAL,2022,439:13. |
APA | Zhou, Ziyang,Pourhashem, Sepideh,Wang, Zhengquan,Duan, Jizhou,Zhang, Ruiyong,&Hou, Baorong.(2022).Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings.CHEMICAL ENGINEERING JOURNAL,439,13. |
MLA | Zhou, Ziyang,et al."Distinctive roles of graphene oxide, ZnO quantum dots, and their nanohybrids in anti-corrosion and anti-fouling performance of waterborne epoxy coatings".CHEMICAL ENGINEERING JOURNAL 439(2022):13. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
1-s2.0-S138589472201(14364KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论