Knowledge Management System Of Institute of Oceanology, Chinese Academy of Sciences
Multilayer Fusion Recurrent Neural Network for Sea Surface Height Anomaly Field Prediction | |
Zhou, Yuan1; Lu, Chang1; Chen, Keran1; Li, Xiaofeng2 | |
2022 | |
发表期刊 | IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING
![]() |
ISSN | 0196-2892 |
卷号 | 60页码:11 |
通讯作者 | Li, Xiaofeng([email protected]) |
摘要 | Sea surface height anomaly (SSHA) is vitally important for climate and marine ecosystems. This article develops a multilayer fusion recurrent neural network (MLFrnn) to achieve an accurate and holistic prediction of the SSHA field, given only as a series of past SSHA observations. The proposed approach learns long-term dependencies within the SSHA time series and spatial correlations among neighboring and remote regions. A new multilayer fusion cell as the building block of the MLFrnn model was designed, which fully fused spatial and temporal features. The daily average satellite altimeter SSHA data in the South China Sea from January 1, 2001, to May 13, 2019, were used to train and test the model. We performed a 21-day ahead SSHA prediction and our MLFrnn model has very high accuracy, with a root mean square error (RMSE) of 0.027 m. Compared with existing deep learning networks, the proposed model was superior both in prediction performance and stability, especially on the wide-scale and long-term predictions. |
关键词 | Computer architecture Microprocessors Predictive models Mathematical models Sea surface Data models Satellites Deep learning (DL) field prediction satellite remote sensing data sea surface height anomaly (SSHA) |
DOI | 10.1109/TGRS.2021.3126460 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDB42000000]; Strategic Priority Research Program of the Chinese Academy of Sciences (CAS)[XDA19060101]; National Natural Science Foundation of China-Shandong Science Foundation[U2006211]; Key Research and Development Project of Shandong Province[2019JZZY010102]; Key Deployment Project of Center for Ocean Mega-Science, CAS[COMS2019R02]; CAS[Y9KY04101L] |
WOS研究方向 | Geochemistry & Geophysics ; Engineering ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS类目 | Geochemistry & Geophysics ; Engineering, Electrical & Electronic ; Remote Sensing ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000757891700002 |
出版者 | IEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/178243 |
专题 | 中国科学院海洋研究所 |
通讯作者 | Li, Xiaofeng |
作者单位 | 1.Tianjin Univ, Sch Elect & Informat Engn, Tianjin 300072, Peoples R China 2.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Shandong, Peoples R China |
推荐引用方式 GB/T 7714 | Zhou, Yuan,Lu, Chang,Chen, Keran,et al. Multilayer Fusion Recurrent Neural Network for Sea Surface Height Anomaly Field Prediction[J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,2022,60:11. |
APA | Zhou, Yuan,Lu, Chang,Chen, Keran,&Li, Xiaofeng.(2022).Multilayer Fusion Recurrent Neural Network for Sea Surface Height Anomaly Field Prediction.IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING,60,11. |
MLA | Zhou, Yuan,et al."Multilayer Fusion Recurrent Neural Network for Sea Surface Height Anomaly Field Prediction".IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING 60(2022):11. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
_Applet_2022-05-13_3(5381KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论