IOCAS-IR  > 海洋环流与波动重点实验室
Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model
Zhang, Xudong1,2; Wang, Haoyu1,2; Wang, Shuo3; Liu, Yanliang4,5; Yu, Weidong6,7; Wang, Jing8; Xu, Qing8; Li, Xiaofeng1,2
2022-04-01
发表期刊REMOTE SENSING OF ENVIRONMENT
ISSN0034-4257
卷号272页码:15
通讯作者Li, Xiaofeng([email protected])
摘要Internal waves (IW) are characterized by a large-amplitude, long-wave crest, and long-propagation distance. They are widespread in the global ocean. Amplitude is an essential IW parameter and is difficult to derive from the IW surface signatures in satellite images. A laboratory experiment and combined satellite/in-situ measurements were carried out to build two internal wave datasets (888 pairs of lab data and 121 pairs of synchronous in-situ data and satellite images). To efficiently use the lab data, we implemented a transfer learning model to retrieve IW amplitude from satellite images. The model is a purely data-driven model pre-trained with lab data and re-trained with satellite/in-situ data. A short connection was incorporated into the transfer learning framework to reduce information loss. Bias correction was adopted to improve the model performance. After the correction, the root mean square error (RMSE) of the estimated IW amplitude decreased from 12.09 m (17.84 m) to 9.59 m (11.59 m), the mean relative error decreased from 21% (27%) to 18% (16%), and the correlation coefficients improved from 0.81 (0.72) to 0.89 (0.90) on the test (training) dataset. For IWs with amplitude exceeding 100 m, the model can be expected to get an absolute error of 10 m. The mean relative error decreased with the increase in IW amplitudes. Comparisons with other algorithms demonstrate that the proposed model is efficient for IW studies. We applied the model to 156 satellite images containing IW signatures in the Andaman Sea, finding that large-amplitude IWs were mainly located at the water depth between 200 m and 1000 m on the continental slope. When considering one-pixel input errors for the peak-to-peak (PP) distance, the model shows large tolerance with the errors. Compared with the KdV equation-based method, the developed model was more accurate.
关键词Internal wave Amplitude Transfer learning Remote sensing In-situ measurement Laboratory experiment
DOI10.1016/j.rse.2022.112940
收录类别SCI
语种英语
资助项目CAS (Chinese Academy of Sciences) Program[Y9KY04101L]; Strategic Priority Research Program of the Chinese Academy of Sciences[XDB42000000]; Key Project of Center for Ocean Mega-Science[COMS2019R02]; National Natural Science Foundation for Young Scientists of China[41906157]; National Natural Science Foundation of China[U2006211]; National Natural Science Foundation of China[42090044]; National Natural Science Foundation of China[41776183]; Major scientific and technological innovation projects in Shandong Province[2019JZZY010102]; UK Royal Society International Exchange Project[IES\R1\211036]
WOS研究方向Environmental Sciences & Ecology ; Remote Sensing ; Imaging Science & Photographic Technology
WOS类目Environmental Sciences ; Remote Sensing ; Imaging Science & Photographic Technology
WOS记录号WOS:000759731300003
出版者ELSEVIER SCIENCE INC
引用统计
被引频次:39[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/178141
专题海洋环流与波动重点实验室
通讯作者Li, Xiaofeng
作者单位1.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, 7 Nanhai Rd, Qingdao 266071, Peoples R China
2.Chinese Acad Sci, Ctr Ocean Megasci, 7 Nanhai Rd, Qingdao 266071, Peoples R China
3.Univ Birmingham, Sch Comp Sci, Birmingham, W Midlands, England
4.Minist Nat Resources, Inst Oceanog 1, Ctr Ocean & Climate Res, Qingdao, Peoples R China
5.Pilot Natl Lab Marine Sci & Technol Qingdao, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China
6.Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai, Peoples R China
7.Sun Yat Sen Univ, Minist Educ, Key Lab Trop Atmosphere Ocean Syst, Guangzhou, Peoples R China
8.Ocean Univ China, Facult Informat Sci & Engn, Qingdao, Peoples R China
第一作者单位中国科学院海洋研究所;  中国科学院海洋大科学研究中心
通讯作者单位中国科学院海洋研究所;  中国科学院海洋大科学研究中心
推荐引用方式
GB/T 7714
Zhang, Xudong,Wang, Haoyu,Wang, Shuo,et al. Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model[J]. REMOTE SENSING OF ENVIRONMENT,2022,272:15.
APA Zhang, Xudong.,Wang, Haoyu.,Wang, Shuo.,Liu, Yanliang.,Yu, Weidong.,...&Li, Xiaofeng.(2022).Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model.REMOTE SENSING OF ENVIRONMENT,272,15.
MLA Zhang, Xudong,et al."Oceanic internal wave amplitude retrieval from satellite images based on a data-driven transfer learning model".REMOTE SENSING OF ENVIRONMENT 272(2022):15.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
1-s2.0-S003442572200(12620KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhang, Xudong]的文章
[Wang, Haoyu]的文章
[Wang, Shuo]的文章
百度学术
百度学术中相似的文章
[Zhang, Xudong]的文章
[Wang, Haoyu]的文章
[Wang, Shuo]的文章
必应学术
必应学术中相似的文章
[Zhang, Xudong]的文章
[Wang, Haoyu]的文章
[Wang, Shuo]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 1-s2.0-S0034425722000542-main.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。