Institutional Repository of Key Laboratory of Marine Environmental Corrosion and Bio-fouling, IOCAS
Microstructure Refinement on Crevice Corrosion of High-Speed Rail Steel U75V Visualized by an In Situ Monitoring System | |
Wang, Jian1,2,3; Zhang, Binbin1,2,4; Xu, Weichen1,2,4; Zhang, Jie1,2,4; Yang, Lihui1,2,4; Peng, Zhongbo3; Hou, Baorong1,2,4 | |
2022-01-07 | |
发表期刊 | FRONTIERS IN MATERIALS |
ISSN | 2296-8016 |
卷号 | 8页码:12 |
通讯作者 | Xu, Weichen([email protected]) ; Zhang, Jie([email protected]) |
摘要 | Rail foot covered by a fastener will suffer from crevice corrosion, leading to thinning and localized attack of crevice interior posing a risk of failure. This work investigated crevice corrosion behavior of a typical pearlitic high-speed rail steel U75V, focusing for the first time on the effect of pearlitic microstructure refinement achieved by heat treatment with different cooling rates 2, 5, and 10 degrees C/s. Under anodic polarization, localized dissolved spots presented on the as-received sample, where crevice corrosion mostly initiated from. For cooling rates 2 and 5 degrees C/s, localized dissolved spots were also observed but crevice corrosion was mostly presented as general corrosion instead of from local spots, ascribed to enhanced tendency of uniform dissolution due to microstructure refinement and homogenization. For cooling rate 10 degrees C/s, crevice corrosion expanded flocculently, ascribed to preferential dissolution of pearlitic nodules with entangled cementite due to over refinement. Crevice corrosion was obviously accelerated by microstructure refinement. Cooling rates 5 and 10 degrees C/s led to the fastest and slowest expansion of the corroded area, respectively, while the corrosion depth was just the opposite based on the same amount of metal loss. This work provides important information regarding the effect of pearlitic microstructure refinement on crevice corrosion and introduces a facile method for in situ monitoring of crevice corrosion. |
关键词 | microstructure crevice corrosion pearlite cooling rate U75V rail steel interlamellar spacing |
DOI | 10.3389/fmats.2021.820721 |
收录类别 | SCI |
语种 | 英语 |
WOS研究方向 | Materials Science |
WOS类目 | Materials Science, Multidisciplinary |
WOS记录号 | WOS:000756964300001 |
出版者 | FRONTIERS MEDIA SA |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/178015 |
专题 | 海洋环境腐蚀与生物污损重点实验室 |
通讯作者 | Xu, Weichen; Zhang, Jie |
作者单位 | 1.Chinese Acad Sci, Inst Oceanol, Key Lab Marine Environm Corros & Biofouling, Qingdao, Peoples R China 2.Pilot Natl Lab Marine Sci & Technol Qingdao, Open Studio Marine Corros & Protect, Qingdao, Peoples R China 3.Chongqing Jiaotong Univ, Sch Shipping & Naval Architecture, Chongqing, Peoples R China 4.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
通讯作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Wang, Jian,Zhang, Binbin,Xu, Weichen,et al. Microstructure Refinement on Crevice Corrosion of High-Speed Rail Steel U75V Visualized by an In Situ Monitoring System[J]. FRONTIERS IN MATERIALS,2022,8:12. |
APA | Wang, Jian.,Zhang, Binbin.,Xu, Weichen.,Zhang, Jie.,Yang, Lihui.,...&Hou, Baorong.(2022).Microstructure Refinement on Crevice Corrosion of High-Speed Rail Steel U75V Visualized by an In Situ Monitoring System.FRONTIERS IN MATERIALS,8,12. |
MLA | Wang, Jian,et al."Microstructure Refinement on Crevice Corrosion of High-Speed Rail Steel U75V Visualized by an In Situ Monitoring System".FRONTIERS IN MATERIALS 8(2022):12. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
fmats-08-820721.pdf(7195KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论