Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni | |
Mueller, Werner E. G.1; Boreiko, Alexandra1; Schlossmacher, Ute1; Wang, Xiaohong2; Eckert, Carsten1,3; Kropf, Klaus1; Li, Jinhe4; Schroeder, Heinz C.1; Muller, WEG, Johannes Gutenberg Univ Mainz, Inst Physiol Chem, Angew Mol Biol Abt, Duesbergweg 6, D-55099 Mainz, Germany | |
2008-02-01 | |
发表期刊 | JOURNAL OF EXPERIMENTAL BIOLOGY |
ISSN | 0022-0949 |
卷号 | 211期号:3页码:300-309 |
文章类型 | Article |
摘要 | Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies.; Silicateins, members of the cathepsin L family, are enzymes that have been shown to be involved in the biosynthesis/condensation of biosilica in spicules from Demospongiae (phylum Porifera), e. g. Tethya aurantium and Suberites domuncula. The class Hexactinellida also forms spicules from this inorganic material. This class of sponges includes species that form the largest biogenic silica structures on earth. The giant basal spicules from the hexactinellids Monorhaphis chuni and Monorhaphis intermedia can reach lengths of up to 3 m and diameters of 10 mm. The giant spicules as well as the tauactines consist of a biosilica shell that surrounds the axial canal, which harbours the axial filament, in regular concentric, lamellar layers, suggesting an appositional growth of the spicules. The lamellae contain 27 kDa proteins, which undergo post-translational modification (phosphorylation), while total spicule extracts contain additional 70 kDa proteins. The 27 kDa proteins cross-reacted with anti-silicatein antibodies. The extracts of spicules from the hexactinellid Monorhaphis displayed proteolytic activity like the silicateins from the demosponge S. domuncula. Since the proteolytic activity in spicule extracts from both classes of sponge could be sensitively inhibited by E-64 (a specific cysteine proteinase inhibitor), we used a labelled E-64 sample as a probe to identify the protein that bound to this inhibitor on a blot. The experiments revealed that the labelled E-64 selectively recognized the 27 kDa protein. Our data strongly suggest that silicatein(-related) molecules are also present in Hexactinellida. These new results are considered to also be of impact for applied biotechnological studies. |
关键词 | Sponges Monorhaphis Chuni Spicules Biosilica Silicatein-related Protein |
DOI | 10.1242/jeb.008193 |
URL | 查看原文 |
收录类别 | SCI |
语种 | 英语 |
WOS记录号 | WOS:000253196400012 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/1757 |
专题 | 海洋生物分类与系统演化实验室 |
通讯作者 | Muller, WEG, Johannes Gutenberg Univ Mainz, Inst Physiol Chem, Angew Mol Biol Abt, Duesbergweg 6, D-55099 Mainz, Germany |
作者单位 | 1.Johannes Gutenberg Univ Mainz, Inst Physiol Chem, Angew Mol Biol Abt, D-55099 Mainz, Germany 2.Natl Res Ctr Geoanal, Beijing 100037, Peoples R China 3.Museum Naturkunde, Inst Systmat Zool, D-10155 Berlin, Germany 4.Chinese Acad Sci, Inst Oceanol, Qingdao 266071, Peoples R China |
推荐引用方式 GB/T 7714 | Mueller, Werner E. G.,Boreiko, Alexandra,Schlossmacher, Ute,et al. Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni[J]. JOURNAL OF EXPERIMENTAL BIOLOGY,2008,211(3):300-309. |
APA | Mueller, Werner E. G..,Boreiko, Alexandra.,Schlossmacher, Ute.,Wang, Xiaohong.,Eckert, Carsten.,...&Muller, WEG, Johannes Gutenberg Univ Mainz, Inst Physiol Chem, Angew Mol Biol Abt, Duesbergweg 6, D-55099 Mainz, Germany.(2008).Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni.JOURNAL OF EXPERIMENTAL BIOLOGY,211(3),300-309. |
MLA | Mueller, Werner E. G.,et al."Identification of a silicatein(-related) protease in the giant spicules of the deep-sea hexactinellid Monorhaphis chuni".JOURNAL OF EXPERIMENTAL BIOLOGY 211.3(2008):300-309. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
Muller-2008-Identifi(774KB) | 限制开放 | -- | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论