Institutional Repository of Key Laboratory of Ocean Circulation and Wave Studies, Institute of Oceanology, Chinese Academy of Sciences
Energetics-Based Estimation of the Diapycnal Mixing Induced by Internal Tides in the Andaman Sea | |
Peng, Shiqiu1,2,3,4; Liao, Jiawen1,4,5; Wang, Xiaowei6; Liu, Zhiyu7,8; Liu, Yanliang2,9; Zhu, Yuhang1,3,4; Li, Bingtian10; Khokiattiwong, Somkiat11; Yu, Weidong12,13,14 | |
2021-04-01 | |
发表期刊 | JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS |
ISSN | 2169-9275 |
卷号 | 126期号:4页码:17 |
通讯作者 | Liu, Zhiyu([email protected]) ; Yu, Weidong([email protected]) |
摘要 | The Andaman Sea (AS) is characterized by surprisingly weak stratification in its deep basin in drastic contrast to the nearby Bay of Bengal (BoB), presumably due to strong diapycnal mixing fertilized by the dissipation of internal tides. Here, we report on the first estimates of tidal mixing in the AS using idealized numerical simulations resolving the generation and evolution of low-mode internal tides. The estimation is based on a diagnostic analysis of the energetics of the simulated internal tides of both local and non-local origins. The results highlight the dominant role of the internal tides generated in the channels along the western boundary island chain in energizing diapycnal mixing in the entire AS. Tidal dissipation and mixing in the deep basin of the AS are found to be highly elevated, with the depth-integrated dissipation rate and the diapycnal diffusivity being O(10(-2)-10 ) W m(-2) and O(10(-3)-10(-2)) m(2) s(-1), respectively, both of which are 1-2 orders of magnitude larger than those in the deep BoB. These model-based estimates of tidal mixing are in general consistent with those from in situ conductivity-temperature-depth (CTD) measurements using the fine-scale parameterization. Our results suggest that the oft-used tidal mixing parameterization considering only local internal tide generation would underestimate the depth-integrated tidal dissipation in the AS by several orders of magnitude, highlighting therefore the necessity of considering contributions of non-local internal tides in parameterizing tidal dissipation and mixing in marginal seas like the AS. |
关键词 | Andaman Sea diapycnal diffusivity internal tides tidal dissipation tidal mixing |
DOI | 10.1029/2020JC016521 |
收录类别 | SCI |
语种 | 英语 |
资助项目 | Major Projects of National Natural Science Foundation of China[41931182]; Major Projects of National Natural Science Foundation of China[41521005]; Guangdong Key Project[2019BT02H594]; National Natural Science Foundation of China[91858201]; National Natural Science Foundation of China[41622601]; National Natural Science Foundation of China[41676016]; National Natural Science Foundation of China[41976023]; Key Special Project for Introduced Talents Team of Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou)[GML2019ZD0303]; National Key R&D Program of China[2016YFC1401404]; Intergovernmental Oceanographic Commission (IOC) Sub-Commission for the Western Pacific (WESTPAC) through its project Monsoon Onset Monitoring and its Social and Ecosystem Impacts (MOMSEI); China-Thailand Joint Laboratory for Climate and Marine Ecosystem |
WOS研究方向 | Oceanography |
WOS类目 | Oceanography |
WOS记录号 | WOS:000645019200010 |
出版者 | AMER GEOPHYSICAL UNION |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | http://ir.qdio.ac.cn/handle/337002/170914 |
专题 | 海洋环流与波动重点实验室 |
通讯作者 | Liu, Zhiyu; Yu, Weidong |
作者单位 | 1.Chinese Acad Sci, South China Sea Inst Oceanol, State Key Lab Trop Oceanog, Guangzhou, Peoples R China 2.Qingdao Natl Lab Marine Sci & Technol, Lab Reg Oceanog & Numer Modeling, Qingdao, Peoples R China 3.Guangdong Lab Guangzhou, Southern Marine Sci & Engn, Guangzhou, Peoples R China 4.Univ Chinese Acad Sci, Beijing, Peoples R China 5.Sun Yat Sen Univ, Natl Supercomp Ctr Guangzhou, Guangzhou, Peoples R China 6.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao, Peoples R China 7.Xiamen Univ, State Key Lab Marine Environm Sci, Coll Ocean & Earth Sci, Xiamen, Peoples R China 8.Xiamen Univ, Dept Phys Oceanog, Coll Ocean & Earth Sci, Xiamen, Peoples R China 9.Minist Nat Resources, Inst Oceanol 1, Ctr Ocean & Climate Res, Qingdao, Peoples R China 10.Shandong Univ Sci & Technol, Dept Ocean Sci & Engn, Qingdao, Peoples R China 11.Phuket Marine Biol Ctr, Phuket, Thailand 12.Sun Yat Sen Univ, Sch Atmospher Sci, Zhuhai, Peoples R China 13.Sun Yat Sen Univ, Key Lab Trop Atmosphere Ocean Syst, Minist Educ, Zhuhai, Peoples R China 14.Guangdong Lab Zhuhai, Southern Marine Sci & Engn, Zhuhai, Peoples R China |
第一作者单位 | 中国科学院海洋研究所 |
推荐引用方式 GB/T 7714 | Peng, Shiqiu,Liao, Jiawen,Wang, Xiaowei,et al. Energetics-Based Estimation of the Diapycnal Mixing Induced by Internal Tides in the Andaman Sea[J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,2021,126(4):17. |
APA | Peng, Shiqiu.,Liao, Jiawen.,Wang, Xiaowei.,Liu, Zhiyu.,Liu, Yanliang.,...&Yu, Weidong.(2021).Energetics-Based Estimation of the Diapycnal Mixing Induced by Internal Tides in the Andaman Sea.JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS,126(4),17. |
MLA | Peng, Shiqiu,et al."Energetics-Based Estimation of the Diapycnal Mixing Induced by Internal Tides in the Andaman Sea".JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS 126.4(2021):17. |
条目包含的文件 | ||||||
文件名称/大小 | 文献类型 | 版本类型 | 开放类型 | 使用许可 | ||
2020JC016521.pdf(4787KB) | 期刊论文 | 出版稿 | 限制开放 | CC BY-NC-SA | 浏览 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论