基于液滴自弹跳效应的超疏水表面海洋大气腐蚀防护机制研究
其他题名Research on the Protection Mechanism of Superhydrophobic Surfaces against Marine Atmospheric Corrosion Based on the Droplet Self-Jumping Behavior
刘笑含
学位类型硕士
导师张盾
2021-05
学位授予单位中国科学院大学
学位授予地点中国科学院海洋研究所
学位名称理学硕士
学位专业海洋腐蚀与防护
关键词超疏水表面,表面能,微观结构,液滴自弹跳效应,海洋大气腐蚀防护
摘要

绝大多数海洋工程装备服役于海洋大气环境中,海洋大气腐蚀不仅造成巨大的经济损失,还威胁着工程人员的生命安全。保护海洋大气环境中材料,使其免受于腐蚀的侵害,是研究者们需要解决的重大问题。基于荷叶效应,研究者们设计制备了许多具有优秀海洋大气腐蚀防护性能的超疏水表面。然而随着研究的深入,荷叶效应的腐蚀防护机制已经不能够满足材料保护的需求。理论上,超疏水表面的液滴自弹跳行为能够自发去除作为腐蚀介质的液滴,有望提高超疏水表面的海洋大气腐蚀防护性能,拓宽超疏水表面在海洋大气腐蚀防护中的应用前景。本论文研究了超疏水表面表面能、微观结构参数、复合结构尺度对液滴自弹跳效应的影响,揭示了相关影响机制。在此基础上探究了液滴自弹跳效应对超疏水表面海洋大气腐蚀防护性能的影响并揭示了基于液滴自弹跳效应的海洋大气腐蚀防护机制,主要结果如下:

(1)首先通过基于Zn (NO3)2和NH3·H2O的水热修饰法制备了具有不同表面能的超疏水表面。其次通过观察冷凝液滴行为发现表面能能够调控液滴自弹跳效应,并从能量的角度构建了表面能与超疏水表面液滴自弹跳行为的相关性模型,发现了调控的主要途径:低的表面能利于更小的粘附特性和固液接触面积,从而具有更小的固液粘附耗散能 Ew,促进液滴自弹跳效应的发生。最后揭示了相关腐蚀防护机制:超疏水表面液滴自弹跳行为可以通过降低液滴覆盖度和促进液滴与超疏水表面接触方式的转变两个方面减小固液接触面积,从而降低海洋大气腐蚀发生的概率。

(2)首先通过基于H2O2和NaOH水热修饰法制备了具有高长径比超疏水表面。其次发现高长径比的超疏水表面能够发生液滴自弹跳行为并计算了液滴弹跳获得动能。最后我们揭示了基于液滴自弹跳效应的海洋大气腐蚀防护机制:主要通过减少液滴覆盖度以及转化接触状态促进固液接触面积减少,从而在冷凝后表现出99.999%的缓蚀率,并提供优异的海洋大气腐蚀防护性能。

(3)通过基于Zn (NO3)2和CH4N2O的水热修饰法在Cu基底上制备了微米以及纳米尺度的复合结构超疏水表面。冷凝实验结果及相关分析表明,与微米尺度相比,纳米尺度复合结构超疏水表面利于液滴自弹跳行为的发生,这源于固液接触面积不同导致的固液粘附耗散能Ew不同。在此基础上我们揭示了基于液滴自弹跳效应的海洋大气腐蚀防护机制:具有液滴自弹跳行为的纳米尺度复合结构表面能够促进液滴覆盖度的减少以及接触状态转化,导致固液接触面积减少,因此具有更优异的腐蚀防护性能。

其他摘要

The vast majority of marine engineering equipment is in service in the marine atmosphere, and marine atmospheric corrosion not only causes huge economic losses, but also threatens the lives of workers. Protecting materials from corrosion in the marine atmosphere is a major problem that researchers need to solve. Based on the “lotus effect”, researchers have designed and prepared lots of superhydrophobic surfaces with excellent protection against corrosion in the marine atmosphere. However, as the research progresses, the corrosion protection mechanism of the “lotus effect” is no longer sufficient to meet the needs of material protection. Theoretically, the droplet self-jumping behavior on the superhydrophobic surface can spontaneously remove droplets as a corrosive media, which is expected to improve the corrosion protection performance of the superhydrophobic surface and broaden the application prospect of the superhydrophobic surface in marine atmospheric corrosion protection. This thesis investigates the effects of surface energy, microstructure parameters and composite structure scale on the self-jumping effect of droplets on superhydrophobic surfaces, and reveals the related influence mechanism. On this basis, the influence of droplet self-jumping behavior on the marine atmospheric corrosion protection performance of superhydrophobic surfaces is investigated, and the mechanism of marine atmospheric corrosion protection based on the droplet self-jumping behavior is revealed. The main results of this thesis are as follows.

(1) Firstly, superhydrophobic surfaces with different surface energies were prepared by hydrothermal modification method based on Zn (NO3)2 and NH3·H2O. Secondly, by observing the behavior of condensed droplets, we found that the surface energy can regulate the droplet self-jumping behavior, and constructed a correlation model between the surface energy and the droplet self-jumping behavior of superhydrophobic surfaces from an energy perspective. The main regulatory pathways are identified: lower surface energy is conducive to smaller adhesion characteristics and solid-liquid contact area, thus having smaller solid-liquid adhesion dissipated energy Ew, which facilitates the droplet self-jumping behavior. Finally, it is revealed that the droplet self-jumping behavior of superhydrophobic surfaces can reduce the solid-liquid contact area by both reducing the droplet coverage and promoting a change in the contact mode between the droplet and the superhydrophobic surface, thus reducing the probability of corrosion in the marine atmosphere.

(2) The hydrothermal modification method based on H2O2 and NaOH was first developed to prepare high aspect ratio superhydrophobic surfaces. Secondly, it is found that the droplet self-jumping behavior can occur on the superhydrophobic surface with high aspect ratio and the kinetic energy obtained from the droplet jumping is calculated. Finally, we reveal a mechanism for protection against marine atmospheric corrosion based on the droplet self-jumping behavior: the reduction of solid-liquid contact area is promoted mainly by reducing droplet coverage and transforming the contact state, thus exhibiting 99.999% corrosion inhibition after condensation and providing excellent protection against marine atmospheric corrosion.

(3) Composite structured superhydrophobic surfaces at the micron as well as nano scale were prepared on Cu substrates by hydrothermal modification based on Zn (NO3)2 and CH4N2O. Then the results of the condensation experiments and the correlation analysis show that the nanoscale composite superhydrophobic surface facilitates the self-jumping behavior of liquid droplets compared to the micron scale, which results from the different solid-liquid contact areas leading to different solid-liquid adhesion dissipation energies Ew. On this basis, we reveal the mechanism of corrosion protection in the marine atmosphere based on the droplet self-jumping behavior: nanoscale composite surfaces with droplet self-jumping behavior can promote the reduction of droplet coverage and contact state transformation, resulting in a reduction of solid-liquid contact area, and therefore have better corrosion protection performance.

学科领域海洋科学其他学科
学科门类理学::海洋科学
资助项目National Natural Science Foundation of China[41922040] ; Strategic Priority Research Program of Chinese Academy of Sciences[XDA23050104] ; National Natural Science Foundation of China[41576079]
语种中文
目录

第1章  引言... 1

1.1  研究背景及意义... 1

1.2  海洋大气腐蚀... 1

1.2.1  海洋环境腐蚀概述... 1

1.2.2  海洋大气腐蚀机理... 2

1.2.3  海洋大气腐蚀的防护方法... 4

1.3  超疏水表面... 5

1.3.1  材料表面的润湿性... 5

1.3.2  超疏水表面理论模型... 6

1.3.3  超疏水表面的荷叶效应... 7

1.3.4  荷叶效应的应用以及弊端... 8

1.4  超疏水表面液滴自弹跳效应... 10

1.4.1  超疏水表面液滴自弹跳行为的发现与研究进展... 10

1.4.2  超疏水表面液滴自弹跳效应的影响因素... 11

1.4.3  超疏水表面液滴自弹跳效应的应用... 12

1.5  选题依据和研究思路... 13

1.5.1  选题依据... 13

1.5.2  研究目标和内容... 14

第2章  不同表面能超疏水表面的制备及其液滴自弹跳效应和海洋大气腐蚀性能研究... 17

2.1  前言... 17

2.2  实验材料与方法... 18

2.2.1  材料、试剂与仪器... 18

2.2.2  超疏水表面的制备... 18

2.2.3  超疏水表面微观形貌、组成及润湿性的表征... 19

2.2.4  超疏水表面液滴自弹跳效应的表征... 19

2.2.5  超疏水表面海洋大气腐蚀防护性能的表征... 19

2.3  结果与讨论... 20

2.3.1  不同表面能超疏水表面微观形貌、润湿性及化学组成... 20

2.3.2  不同表面能超疏水表面液滴自弹跳效应... 24

2.3.3  不同表面能超疏水表面海洋大气腐蚀防护性能... 35

2.3.4  不同表面能超疏水表面海洋大气腐蚀防护机制... 41

2.4  小结... 42

第3章  高长径比超疏水表面的制备及其液滴自弹跳效应和海洋大气腐蚀性能研究... 45

3.1  前言... 45

3.2  实验材料与方法... 45

3.2.1  材料、试剂与仪器... 45

3.2.2  超疏水表面的制备... 45

3.2.3  超疏水表面微观形貌、组成及润湿性的表征... 46

3.2.4  超疏水表面液滴自弹跳效应的表征... 46

3.2.5  超疏水表面海洋大气腐蚀防护性能的表征... 46

3.3  实验结果与讨论... 47

3.3.1  高长径比超疏水表面微观形貌、组成及润湿性... 47

3.3.2  高长径比超疏水表面液滴自弹跳效应... 50

3.3.3  高长径比超疏水表面海洋大气腐蚀防护性能... 54

3.3.4  高长径比超疏水表面海洋大气腐蚀防护机制... 57

3.4  小结... 58

第4章  不同尺度复合结构超疏水表面的制备及其液滴自弹跳效应和海洋大气腐蚀性能研究... 59

4.1  前言... 59

4.2  实验材料与方法... 59

4.2.1  材料、试剂与仪器... 59

4.2.2  超疏水表面的制备... 59

4.2.3  超疏水表面微观形貌、组成及润湿性的表征... 60

4.2.4  超疏水表面液滴自弹跳效应的表征... 60

4.2.5  超疏水表面海洋大气腐蚀防护性能的表征... 60

4.3  实验结果与讨论... 61

4.3.1  不同尺度复合结构超疏水表面微观形貌、组成及润湿性... 61

4.3.2  不同尺度复合结构超疏水表面液滴自弹跳效应... 66

4.3.3  不同尺度复合结构超疏水表面海洋大气腐蚀防护性能... 69

4.3.4  不同尺度复合结构超疏水表面海洋大气腐蚀防护机制... 73

4.4  小结... 75

第5章  结论与展望... 77

5.1  结论... 77

5.2  展望... 77

参考文献... 79

致谢... 87

个人简历及攻读学位期间发表的学术论文与研究成果... 89

文献类型学位论文
条目标识符http://ir.qdio.ac.cn/handle/337002/170712
专题海洋环境腐蚀与生物污损重点实验室
推荐引用方式
GB/T 7714
刘笑含. 基于液滴自弹跳效应的超疏水表面海洋大气腐蚀防护机制研究[D]. 中国科学院海洋研究所. 中国科学院大学,2021.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
毕业论文刘笑含最终版.pdf(6089KB)学位论文 延迟开放CC BY-NC-SA浏览 2025-7-1后可获取
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[刘笑含]的文章
百度学术
百度学术中相似的文章
[刘笑含]的文章
必应学术
必应学术中相似的文章
[刘笑含]的文章
相关权益政策
暂无数据
收藏/分享
文件名: 毕业论文刘笑含最终版.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。