IOCAS-IR  > 海洋环流与波动重点实验室
Exploring sensitive area in the tropical Indian Ocean for El Nino prediction: implication for targeted observation
Zhou Qian1,2; Duan Wansuo3,4; Hu Junya5
2020-11-01
发表期刊JOURNAL OF OCEANOLOGY AND LIMNOLOGY
ISSN2096-5508
卷号38期号:6页码:1602-1615
通讯作者Duan Wansuo([email protected])
摘要Based on initial errors of sea temperature in the tropical Indian Ocean that are most likely to induce spring predictability barrier (SPB) for the El Nino prediction, the sensitive area of sea temperature in the tropical Indian Ocean for El Nino prediction starting from January is identified using the CESM1.0.3 (Community Earth System Model), a fully coupled global climate model. The sensitive area locates mainly in the subsurface of eastern Indian Ocean. The effectiveness of applying targeted observation in the sensitive area is also evaluated in an attempt to improve the El Nino prediction skill. The results of sensitivity experiments indicate that if initial errors exist only in the tropical Indian Ocean, applying targeted observation in the sensitive area in the Indian Ocean can significantly improve the El Nino prediction. In particular, for SPB-related El Nino events, when initial errors of sea temperature exist both in the tropical Indian Ocean and the Pacific Ocean, which is much closer to the realistic predictions, if targeted observations are conducted in the sensitive area of tropical Pacific, the prediction skills of SPB-related El Nino events can be improved by 20.3% in general. Moreover, if targeted observations are conducted in the sensitive area of tropical Indian Ocean in addition, the improvement of prediction skill can be increased by 25.2%. Considering the volume of sensitive area in the tropical Indian Ocean is about 1/3 of that in the tropical Pacific Ocean, the prediction skill improvement per cubic kilometer in the sensitive area of tropical Indian Ocean is competitive to that of the tropical Pacific Ocean. Additional to the sensitive area of the tropical Pacific Ocean, sensitive area of the tropical Indian Ocean is also a very effective and cost-saving area for the application of targeted observations to improve El Nino forecast skills.
关键词tropical Indian Ocean El Niñ o prediction sensitive area targeted observation
DOI10.1007/s00343-019-9062-4
收录类别SCI
语种英语
WOS研究方向Marine & Freshwater Biology ; Oceanography
WOS类目Limnology ; Oceanography
WOS记录号WOS:000601549400002
出版者SCIENCE PRESS
引用统计
被引频次:11[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/170067
专题海洋环流与波动重点实验室
通讯作者Duan Wansuo
作者单位1.Minist Nat Resources, Natl Marine Environm Forecasting Ctr, Beijing 100081, Peoples R China
2.Natl Marine Environm Forecasting Ctr, Key Lab Res Marine Hazards Forecasting, Beijing 100081, Peoples R China
3.Chinese Acad Sci, Inst Atmospher Phys, LASG, Beijing 100029, Peoples R China
4.Univ Chinese Acad Sci, Beijing 100049, Peoples R China
5.Chinese Acad Sci, Inst Oceanol, Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
推荐引用方式
GB/T 7714
Zhou Qian,Duan Wansuo,Hu Junya. Exploring sensitive area in the tropical Indian Ocean for El Nino prediction: implication for targeted observation[J]. JOURNAL OF OCEANOLOGY AND LIMNOLOGY,2020,38(6):1602-1615.
APA Zhou Qian,Duan Wansuo,&Hu Junya.(2020).Exploring sensitive area in the tropical Indian Ocean for El Nino prediction: implication for targeted observation.JOURNAL OF OCEANOLOGY AND LIMNOLOGY,38(6),1602-1615.
MLA Zhou Qian,et al."Exploring sensitive area in the tropical Indian Ocean for El Nino prediction: implication for targeted observation".JOURNAL OF OCEANOLOGY AND LIMNOLOGY 38.6(2020):1602-1615.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Zhou2020_Article_Exp(1376KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Zhou Qian]的文章
[Duan Wansuo]的文章
[Hu Junya]的文章
百度学术
百度学术中相似的文章
[Zhou Qian]的文章
[Duan Wansuo]的文章
[Hu Junya]的文章
必应学术
必应学术中相似的文章
[Zhou Qian]的文章
[Duan Wansuo]的文章
[Hu Junya]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Zhou2020_Article_ExploringSensitiveAreaInTheTro.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。