IOCAS-IR  > 海洋环流与波动重点实验室
Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network
Wang, He1,2; Yang, Jingsong2,3; Zhu, Jianhua1; Ren, Lin2,3; Liu, Yahao4,5,6; Li, Weiwei1; Chen, Chuntao7
2021
发表期刊REMOTE SENSING
卷号13期号:2页码:18
通讯作者Wang, He([email protected])
摘要Sea state estimation from wide-swath and frequent-revisit scatterometers, which are providing ocean winds in the routine, is an attractive challenge. In this study, state-of-the-art deep learning technology is successfully adopted to develop an algorithm for deriving significant wave height from Advanced Scatterometer (ASCAT) aboard MetOp-A. By collocating three years (2016-2018) of ASCAT measurements and WaveWatch III sea state hindcasts at a global scale, huge amount data points (>8 million) were employed to train the multi-hidden-layer deep learning model, which has been established to map the inputs of thirteen sea state related ASCAT observables into the wave heights. The ASCAT significant wave height estimates were validated against hindcast dataset independent on training, showing good consistency in terms of root mean square error of 0.5 m under moderate sea condition (1.0-5.0 m). Additionally, reasonable agreement is also found between ASCAT derived wave heights and buoy observations from National Data Buoy Center for the proposed algorithm. Results are further discussed with respect to sea state maturity, radar incidence angle along with the limitations of the model. Our work demonstrates the capability of scatterometers for monitoring sea state, thus would advance the use of scatterometers, which were originally designed for winds, in studies of ocean waves.
关键词Advanced Scatterometer (ASCAT) significant wave height WaveWatch III deep learning multi-hidden-layer neural network
DOI10.3390/rs13020195
收录类别SCI
语种英语
资助项目National Key Research and Development Program of China[2016YFC1401007]
WOS研究方向Environmental Sciences & Ecology ; Geology ; Remote Sensing
WOS类目Environmental Sciences ; Geosciences, Multidisciplinary ; Remote Sensing
WOS记录号WOS:000611561800001
出版者MDPI
引用统计
被引频次:13[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符http://ir.qdio.ac.cn/handle/337002/170052
专题海洋环流与波动重点实验室
通讯作者Wang, He
作者单位1.Natl Ocean Technol Ctr, Minist Nat Resources, Tianjin 300112, Peoples R China
2.Second Inst Oceanog, State Key Lab Satellite Ocean Environm Dynam, Minist Nat Resources, Hangzhou 310012, Peoples R China
3.Southern Marine Sci & Engn Guangdong Lab Zhuhai, Zhuhai 519082, Peoples R China
4.Chinese Acad Sci, Inst Oceanol, CAS Key Lab Ocean Circulat & Waves, Qingdao 266071, Peoples R China
5.Chinese Acad Sci, Ctr Ocean Mega Sci, Qingdao 266071, Peoples R China
6.Qingdao Natl Lab Marine Sci & Technol, Lab Ocean & Climate Dynam, Qingdao 266237, Peoples R China
7.Yantai Univ, Sch Ocean, Yantai 264005, Peoples R China
推荐引用方式
GB/T 7714
Wang, He,Yang, Jingsong,Zhu, Jianhua,et al. Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network[J]. REMOTE SENSING,2021,13(2):18.
APA Wang, He.,Yang, Jingsong.,Zhu, Jianhua.,Ren, Lin.,Liu, Yahao.,...&Chen, Chuntao.(2021).Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network.REMOTE SENSING,13(2),18.
MLA Wang, He,et al."Estimation of Significant Wave Heights from ASCAT Scatterometer Data via Deep Learning Network".REMOTE SENSING 13.2(2021):18.
条目包含的文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
remotesensing-13-001(5257KB)期刊论文出版稿限制开放CC BY-NC-SA浏览
个性服务
推荐该条目
保存到收藏夹
查看访问统计
导出为Endnote文件
谷歌学术
谷歌学术中相似的文章
[Wang, He]的文章
[Yang, Jingsong]的文章
[Zhu, Jianhua]的文章
百度学术
百度学术中相似的文章
[Wang, He]的文章
[Yang, Jingsong]的文章
[Zhu, Jianhua]的文章
必应学术
必应学术中相似的文章
[Wang, He]的文章
[Yang, Jingsong]的文章
[Zhu, Jianhua]的文章
相关权益政策
暂无数据
收藏/分享
文件名: remotesensing-13-00195.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。